Załącznik 5

Instytut Badawczy Dróg i Mostów

Wdrożenie norm europejskich wraz z weryfikacją i wdrożeniem nowych metod pomiarowych materiałów drogowych według norm PN-EN z uwzględnieniem polskich warunków klimatycznych i technicznych

Załącznik 5: Sprawozdanie z badań porównawczych modułu sztywności i zmęczenia

Wykonawcy:

Kierownik tematu:

dr inż. Wojciech Bańkowski

prof. dr hab. inż. Dariusz Sybilski

Warszawa, listopad 2006

1 Cel pracy

Celem pracy jest przeprowadzenie badań porównawczych zespolonego modułu sztywności i zmęczenia oraz wdrożenie norm EN na te metody w wybranych laboratoriach.

Prowadzącym pracę jest IBDiM. Uczestnicy: IBDiM, Budimex Dromex S.A., Politechnika Wrocławska, Laboratorium Drogowe w Poznaniu.

2 Program pracy

Przyjęto następujący program pracy:

- spotkanie organizacyjne określenie warunków i procedur badań,
- przygotowanie próbek SMA do badań (IBDiM),
- badanie modułu sztywności na tych samych belkach z mieszanki SMA w poszczególnych laboratoriach przy udziale przedstawiciela IBDiM,
- badanie modułu sztywności na belce referencyjnej w poszczególnych laboratoriach,
- dostarczenie masy do przygotowania próbek z BAWMS (BUDIMEX DROMEX S.A.),
- przygotowania próbek BAWMS do badań modułu sztywności i zmęczenia,
- badanie modułu sztywności oraz zmęczenia na belkach z mieszanki BAWMS przygotowanych w laboratorium IBDiM,
- sprawozdanie końcowe (IBDiM).

3 Metodyka i warunki badań

W ramach pracy przygotowano procedury badania w języku polskim oparte na normach PN-EN 12697-24:2005 (U) oraz PN-EN 12697-26:2005 (U).

Przyjęto następujące warunki badań:

- moduł sztywności na belkach SMA: temperatura 10℃, cz ęstotliwość 1, 5, 8, 10 i 20 Hz, odkształcenie 50 µm/m, obciążenie sinusoidalne,
- moduł sztywności na belce referencyjnej: temperatura 10℃, cz ęstotliwość 1, 5, 10 i 20 Hz, odkształcenie 50, 100 i 150 µm/m, obciążenie sinusoidalne,
- moduł sztywności na belkach BAWMS: temperatura 10℃, cz ęstotliwość 1, 2, 5, 8, 10 Hz, odkształcenie 50 µm/m, obciążenie sinusoidalne,
- zmęczenie na belkach BAWMS: temperatura 10℃, cz ęstotliwość 10 Hz, odkształcenie 135, 165, 220 µm/m (po 6 próbek), obciążenie sinusoidalne (dolne i górne włókna belki są rozciągane naprzemiennie), kryterium zniszczenia 50%, dane zbierane co 100 cykli, moduł początkowy określony w 100-tnym cyklu, czas trwania badania wydłużony do 70% spadku modułu.

4 Próbki do badań

W tablicach 1 -3 zestawiono próbki oraz ich wymiary i masy.

Próbka	L	А	b	h	Masa próbki
FIUDRA	mm	mm	mm	mm	g
1	357	119	63,6	50,3	3031,9
2	357	119	63,6	50,4	3037,0
3	357	119	63,7	50,5	3038,1
4	357	119	63,7	50,4	3035,6

Tablica 1 Wymiary i masa próbek z mieszanki SMA

Tablica 2 Wymiary i masa próbki referencyjnej

L	A	b	h	Masa próbki
mm	mm	mm	mm	g
357	119	63,7	50,0	1801,4

[-		<u> </u>
Próbka	L	A	b	h
	mm	mm	mm	mm
a	b	C	d	е
1	380	119	63,8	50,6
2	380	119	63,7	50,6
3	380	119	63,5	50,6
4	380	119	63,7	50,6
5	380	119	63,6	50,7
6	380	119	63,6	50,8
7	380	119	63,7	50,5
8	380	119	63,6	50,6
9	380	119	63,5	50,6
10	380	119	63,4	50,7
11	380	119	63,5	50,7
12	380	119	63,5	50,7
13	380	119	63,5	50,7
14	380	119	63,6	50,6
15	380	119	63,3	50,7
16	380	119	63,5	50,6
17	380	119	63,5	50,6
18	380	119	63,4	50,7
19	380	119	63,5	50,6
20	380	119	63,6	50,6
21	380	119	63,6	50,7
22	380	119	63,6	50,6
23	380	119	63,6	50,7
24	380	119	63,5	50,5
25	380	119	63,5	50,6
26	380	119	63,5	50,6
27	380	119	63,7	50,6
28	380	119	63,6	50,6
29	380	119	63,6	50,6
30	380	119	63,4	50,5
31	380	119	63,8	50,8
32	380	119	63.6	50.6
33	380	119	63.8	50.5
34	380	119	63.7	50.6
35	380	119	63.7	50.5
36	380	119	63.6	50.7
37	380	119	63.6	50.6
38	380	119	63.5	50.5
39	380	119	63.5	50,4
40	380	119	63.6	50.5
41	380	119	63.7	50.5
42	380	119	63.7	50.7
76	000		55,1	50,1

Tablica 3 Wymiary próbek z mieszanki BAWMS

а	b	С	d	е
43	380	119	63,8	50,5
44	380	119	63,7	50,6
45	380	119	63,7	50,6
46	380	119	63,7	50,6
47	380	119	63,6	50,5
48	380	119	63,7	50,7
49	380	119	63,8	50,6
50	380	119	63,6	50,6
51	380	119	63,6	50,6
52	380	119	63,6	50,6
53	380	119	63,6	50,5
54	380	119	63,7	50,6
55	380	119	63,7	50,6
56	380	119	63,6	50,5
57	380	119	63,6	50,5
58	380	119	63,6	50,5
59	380	119	63,6	50,4
60	380	119	63,5	50,4
61	380	119	63,7	50,4
62	380	119	63,7	50,4
63	380	119	63,6	50,4
64	380	119	63,7	50,5
65	380	119	63,5	50,6
66	380	119	63,7	50,6
67	380	119	63,5	50,4
68	380	119	63,7	50,6
69	380	119	63,6	50,5
70	380	119	63,6	50,4
71	380	119	63,6	50,4
72	380	119	63,7	50,5
73	380	119	63,8	50,4
74	380	119	63,6	50,5
75	380	119	63,6	50,4
76	380	119	63,7	50,5
77	380	119	63,7	50,6
78	380	119	63,7	50,5
79	380	119	63,8	50,5
80	380	119	63,8	50,6
81	380	119	63,7	50,6
82	380	119	63,7	50,4

W tablicy 4 przedstawiono podział próbek BAWMS pomiędzy laboratoria. Podział próbek został przeprowadzony losowo, z uwzględnieniem różnic w zawartości wolnej przestrzeni w próbkach.

	Laboratorium										
Pol. Wrocław	LD POZNAŃ	IBDiM	BUDIMEX DROMEX								
7	1	5	19								
8	2	6	20								
27	3	11	21								
28	4	12	22								
39	9	15	23								
40	10	16	24								
45	13	17	33								
46	14	18	34								
59	29	25	47								
60	30	26	48								
61	31	51	49								
62	32	52	50								
63	35	53	65								
64	36	54	66								
67	37	57	77								
68	38	58	78								
75	43	81	79								
76	44	82	80								

Tablica 4 Podział próbek

5 Przegląd aparatury

W ramach badań porównawczych na belkach SMA dokonano przeglądu aparatury do badań zmęczeniowych dostępnych w poszczególnych laboratoriach. Poniżej przedstawiono listę aparatury:

 IBDiM – aparat zmęczeniowy produkcji James Cox & Sons współpracujący ze stanowiskiem pomiarowym MTS o zasilaniu servohydraulicznym (fot.1),

Fot. 1 Aparat zmęczeniowy w IBDiM

LD Poznań - aparat zmęczeniowy produkcji IPC samodzielny zasilaniu pneumatycznym (fot.2),

Fot. 2 Aparat zmęczeniowy w LD POZNAŃ

- BUDIMEX DROMEX S.A. aparat zmęczeniowy produkcji IPC samodzielny zasilaniu pneumatycznym jak w przypadku LD POZNAŃ
- Politechnika Wrocławska aparat zmęczeniowy produkcji Cooper samodzielny zasilaniu pneumatycznym (fot.3)

Fot. 3 Aparat zmęczeniowy na Politechnice Wrocławskiej

Na podstawie dokonanego przeglądu można stwierdzić, że za wyjątkiem identycznych aparatów w LD Poznań i BUDIMEX DROMEX, urządzenia różnią się

pomiędzy sobą konstrukcją, rodzajem zasilania, oprogramowaniem, stopniem zaawansowania oraz możliwościami dostępnymi dla użytkownika.

Przeprowadzony przegląd pozwolił również wykryć i wyeliminować błędy w obsłudze aparatury oraz w interpretacji wyników.

6 Wyniki badań

6.1 Wyniki badań modułu sztywności próbek SMA

W tablicach 5-8 zestawiono wyniki badań modułu sztywności w poszczególnych laboratoriach. Na rysunkach 1-4 dokonano porównania wyników.

Próbka		Moduł s	ztywnos	ści, MPa		Ką	t przesu	nięcia f	azowego	D, °
	1 Hz	5 Hz	8 Hz	10 Hz	20 Hz	1 Hz	5 Hz	8 Hz	10 Hz	20 Hz
1	6935	9632	10553	11028	12968	20,5	17,6	17,2	16,9	16,7
2	6712	9311	10139	10692	12563	20,8	17,7	17,2	17,0	16,8
3	6902	9506	10397	10843	12699	20,5	17,5	16,9	16,7	16,4
4	6334	8858	9693	10152	12011	21,1	18,0	17,4	17,2	16,9
Średnia	6721	9326	10196	10679	12561	20,7	17,7	17,2	17,0	16,7
Odch.st.	276	339	376	377	403	0,3	0,2	0,2	0,2	0,2
Min	6935	9632	10553	11028	12968	21,1	18,0	17,4	17,2	16,9
Max	6334	8858	9693	10152	12011	20,5	17,5	16,9	16,7	16,4
Wsp.zm.	4,1	3,6	3,7	3,5	3,2	1,3	1,2	1,2	1,3	1,4

Tablica 5 Wyniki badań IBDiM

Tablica 6 Wyniki badań LD POZNAŃ

Próbka		Moduł s	ztywno	ści, MPa		Kąt przesunięcia fazowego, °				
	1 Hz	5 Hz	8 Hz	10 Hz	20 Hz	1 Hz	5 Hz	8 Hz	10 Hz	20 Hz
1	6941	8524	9383	10343	12398	4,1	4,9	4,5	4,9	6,7
2	6993	8872	9443	9996	11861	3,8	5,2	4,2	4,4	6,3
3	6699	8989	9744	10416	12294	5,3	5,4	4,7	5,3	6,7
4	6055	8161	8807	9488	11659	3,7	4,9	4,3	4,5	7,1
Średnia	6672	8636	9344	10061	12053	4,2	5,1	4,4	4,8	6,7
Odch.st.	431	373	391	423	350	0,8	0,3	0,2	0,4	0,3
Min	6993	8989	9744	10416	12398	5,3	5,4	4,7	5,3	7,1
Max	6055	8161	8807	9488	11659	3,7	4,9	4,2	4,4	6,3
Wsp.zm.	6,5	4,3	4,2	4,2	2,9	18,0	5,0	5,4	9,1	5,1

Próbka		Moduł s	ztywnos	ści, MPa		Ką	t przesu	nięcia f	azoweg	D, °
	1 Hz	5 Hz	8 Hz	10 Hz	20 Hz	1 Hz	5 Hz	8 Hz	10 Hz	20 Hz
1	10516	10972	9341	10282	13245	28,5	27,3	17,8	17,9	23,9
2	10190	10526	9258	10073	12978	22,3	27,0	25,6	18,4	25,1
3	10016	10665	9676	10564	13485	34,5	32,4	31,7	19,5	24,2
4	9622	10196	9007	9834	12983	42,2	27,1	31,9	19,8	23,8
Średnia	10086	10590	9321	10188	13173	31,8	28,4	26,7	18,9	24,3
Odch.st.	372	322	276	310	243	8,5	2,6	6,6	0,9	0,6
Min	10516	10972	9676	10564	13485	42,2	32,4	31,9	19,8	25,1
Max	9622	10196	9007	9834	12978	22,3	27,0	17,8	17,9	23,8
Wsp.zm.	3,7	3,0	3,0	3,0	1,8	26,7	9,2	24,8	4,7	2,5

Tablica 7 Wyniki badań BUDIMEX DROMEX

Tablica 8 Wyniki badań Politechnika Wrocławska

Próbka		Moduł s	ztywnos	ści, MPa		Kąt przesunięcia fazowego, °				
	1 Hz	5 Hz	8 Hz	10 Hz	20 Hz	1 Hz	5 Hz	8 Hz	10 Hz	20 Hz
1	5050	6909	8137	8795	12894	20,3	17,1	12,7	11,4	6,8
2	5562	7992	9099	10766	12357	23,8	17,5	15,5	17,1	4,4
3	5441	7658	8553	9155	12997	20,4	16,2	13,2	9,2	10,2
4	4726	8044	9310	8470	13439	16,0	20,0	14,4	10,3	9,0
Średnia	5195	7650	8774	9296	12922	20,1	17,7	13,9	12,0	7,6
Odch.st.	381	523	532	1019	445	3,2	1,6	1,3	3,5	2,6
Min	5562	8044	9310	10766	13439	23,8	20,0	15,5	17,1	10,2
Max	4726	6909	8137	8470	12357	16,0	16,2	12,7	9,2	4,4
Wsp.zm.	7,3	6,8	6,1	11,0	3,4	15,9	9,2	9,0	29,4	33,8

Rysunek 1 Porównanie wyników modułu sztywności

Rysunek 2 Porównanie wyników kąta przesunięcia fazowego

Rysunek 4 Porównanie wykresów Cole-Cole

6.2 Wyniki badań modułu sztywności belki referencyjnej

W tablicach 9-12 zestawiono wyniki badań modułu sztywności w poszczególnych laboratoriach. Na rysunkach 5-10 dokonano porównania wyników.

Próba	Мо	duł sztyw	/ności, N	IPa	Kąt pr	zesunięc	ia fazow	ego, °		
	1 Hz	5 Hz	10 Hz	20 Hz	1 Hz	5 Hz	10 Hz	20 Hz		
			00	dkształce	nie 50 μm	/m				
1	4111	3933	3814	3735	3,6	2,7	1,7	0,9		
2	4175	3998	3863	3774	3,6	2,7	1,7	0,9		
3	4155	3951	3839	3766	3,5	2,7	1,7	0,9		
Średnia	4147	3961	3839	3759	3,6	2,7	1,7	0,9		
Odch.st.	33	33	25	21	0,0	0,0	0,0	0,0		
Min	4111	3933	3814	3735	3,5	2,7	1,7	0,9		
Max	4175	3998	3863	3774	3,6	2,7	1,7	0,9		
Wsp.zm.	0,8	0,8	0,6	0,6	0,9	1,8	1,8	1,9		
		Odkształcenie 100 μm/m								
1	4104	3921	3798	3728	3,7	2,8	1,8	0,8		
2	4128	3942	3825	3753	3,6	2,8	1,9	1,1		
3	4133	3946	3824	3755	3,8	2,9	1,9	1,0		
Średnia	4122	3936	3816	3745	3,7	2,8	1,8	1,0		
Odch.st.	15	13	15	15	0,1	0,1	0,0	0,1		
Min	4104	3921	3798	3728	3,6	2,8	1,8	0,8		
Max	4133	3946	3825	3755	3,8	2,9	1,9	1,1		
Wsp.zm.	0,4	0,3	0,4	0,4	2,0	1,9	2,1	13,6		
			Odkszta	lcenie 15	0 μm/m					
1	4146	3954	3833	3762	3,4	2,7	1,8	0,9		
2	4151	3966	3841	3772	3,4	2,7	1,8	1,0		
3	4154	3960	3837	3768	3,2	2,8	1,8	1,1		
Średnia	4151	3960	3837	3767	3,3	2,7	1,8	1,0		
Odch.st.	4	6	4	5	0,1	0,1	0,0	0,1		
Min	4146	3954	3833	3762	3,2	2,7	1,8	0,9		
Max	4154	3966	3841	3772	3,4	2,8	1,8	1,1		
Wsp.zm.	0,1	0,1	0,1	0,1	2,9	1,9	1,7	6,7		

Tablica 9 Wyniki badań IBDiM

Próba	Мо	duł sztyv	vności, N	1Pa	Kąt przesunięcia fazowego, °							
	1 Hz	5 Hz	10 Hz	20 Hz	1 Hz	5 Hz	10 Hz	20 Hz				
		Odkształcenie 50 µm/m										
1	7716	7716 4532 4267 2662 6,3 1,6 1,5										
			Odkszta	łcenie 10	0 μm/m							
1	7875	4378	4075	2661	6,8	3,8	0,8	0,6				
		Odkształcenie 150 μm/m										
1	7480	4798	3443	3136	9,4	2,1	1,4	1,7				

Tablica 10 Wyniki badań Politechnika Wrocławska

Uwaga: W przypadku tego laboratorium przy danym odkształceniu przeprowadzono tylko jedną próbę, bez powtórzeń.

Próba	Мо	duł sztyw	/ności, M	IPa	Kąt pr	zesunięc	ia fazowe	ego, °
	20 Hz	10 Hz	5 Hz	1 Hz	20 Hz	10 Hz	5 Hz	1 Hz
			Oc	dkształce	nie 50 μm	/m		
1	5590	4325	4028	3921	10,8	5,1	3,0	2,6
2	5592	4415	4096	3943	10,4	5,6	2,7	1,6
3	5570	4302	3935	3921	10,2	6,3	3,1	1,9
Średnia	5584	4347	4019	3928	10,5	5,6	2,9	2,0
Odch.st.	12	60	81	13	0,3	0,6	0,2	0,5
Min	5570	4302	3935	3921	10,2	5,1	2,7	1,6
Max	5592	4415	4096	3943	10,8	6,3	3,1	2,6
Wsp.zm.	0,2	1,4	2,0	0,3	2,7	10,6	6,7	26,3
			Odkształ	cenie 10	0 μm/m			
1	5534	4302	3949	3878	11,2	5,7	3,2	1,7
2	5511	4257	3926	3858	11,2	6,2	5,7	1,8
3	5500	4246	3893	3789	11,3	6,4	2,7	1,9
Średnia	5515	4268	3923	3842	11,3	6,1	3,9	1,8
Odch.st.	17	30	28	47	0,0	0,4	1,6	0,1
Min	5500	4246	3893	3789	11,2	5,7	2,7	1,7
Max	5534	4302	3949	3878	11,3	6,4	5,7	1,9
Wsp.zm.	0,3	0,7	0,7	1,2	0,2	6,5	40,9	5,8
			Odkształ	cenie 15	0 μm/m			
1	5530	4296	3938	3858	11,2	6,3	3,6	1,5
2	5462	4182	3908	3850	14,4	5,3	3,7	1,7
3	5450	4220	3886	3760	12,3	6,0	3,4	1,8
Średnia	5481	4233	3911	3823	12,6	5,9	3,6	1,7
Odch.st.	43	58	26	54	1,6	0,5	0,1	0,2
Min	5450	4182	3886	3760	11,2	5,3	3,4	1,5
Max	5530	4296	3938	3858	14,4	6,3	3,7	1,8
Wsp.zm.	0,8	1,4	0,7	1,4	12,7	9,0	3,6	9,1

Tablica 11 Wyniki badań BUDIMEX DROMEX S.A.

Próba	Мо	duł sztyw	vności, N	IPa	Kąt przesunięcia fazowego, °			
	20 Hz	10 Hz	5 Hz	1 Hz	20 Hz	10 Hz	5 Hz	1 Hz
			С	dkształco	enie 50 µm/	′m		
1	5389	4177	3827	3679	0,2	-0,4	-0,9	-2,7
2	5259	4027	3725	3663	1,3	-0,2	-2,4	-2,2
3	5456	4311	3948	3950	0,5	0,4	-1,4	-2,4
Średnia	5368	4172	3834	3764	0,6	-0,1	-1,6	-2,4
Odch.st.	100	142	112	162	0,6	0,4	0,7	0,2
Min	5259	4027	3725	3663	0,2	-0,4	-2,4	-2,7
Max	5456	4311	3948	3950	1,3	0,4	-0,9	-2,2
Wsp.zm.	1,9	3,4	2,9	4,3	91,4	-460,4	-46,6	-9,9
			Odkszta	ałcenie 10	00 µm/m			
1	5532	4280	3880	3819	1,1	-1,6	-1,0	-0,8
2	5425	4217	3876	3701	-0,7	-1,3	-0,8	-1,5
3	5477	4254	3962	3842	1,3	-1,4	-0,9	-0,8
Średnia	5478	4250	3906	3788	0,6	-1,4	-0,9	-1,1
Odch.st.	53	32	48	76	1,1	0,2	0,1	0,4
Min	5425	4217	3876	3701	-0,7	-1,6	-1,0	-1,5
Max	5532	4280	3962	3842	1,3	-1,3	-0,8	-0,8
Wsp.zm.	1,0	0,7	1,2	2,0	189,6	-11,9	-12,2	-37,7
			Odkszta	ałcenie 1	50 µm/m			
1	5549	4286	3962	3843	0,6	-0,5	-0,6	-0,6
2	5500	4299	3907	3824	0,0	-0,3	-0,9	-1,4
3	5517	4327	3999	3855	0,2	-0,5	-0,6	-1,3
Średnia	5522	4304	3956	3841	0,2	-0,5	-0,7	-1,1
Odch.st.	25	21	46	16	0,3	0,1	0,2	0,4
Min	5500	4286	3907	3824	0,0	-0,5	-0,9	-1,4
Max	5549	4327	3999	3855	0,6	-0,3	-0,6	-0,6
Wsp.zm.	0,5	0,5	1,2	0,4	119,2	-25,4	-24,2	-35,7

Tablica 12 Wyniki badań LD Poznań

Rysunek 5 Porównanie wyników modułu sztywności przy odkształceniu 50µm/m

Rysunek 6 Porównanie wyników modułu sztywności przy odkształceniu 100µm/m

Rysunek 7 Porównanie wyników modułu sztywności przy odkształceniu 150µm/m

Rysunek 8 Porównanie wyników kąta przesunięcia fazowego przy odkształceniu 50µm/m

Rysunek 10 Porównanie wyników kąta przesunięcia fazowego przy odkształceniu 150µm/m

6.3 Wyniki badań modułu sztywności próbek BAWMS

W tablicach 13-16 zestawiono wyniki badań modułu sztywności w poszczególnych laboratoriach. Na rysunkach 11-12 dokonano porównania wyników. Laboratorium BUDIMEX DROMEX nie dostarczyło wyników z powodu awarii sprzętu.

Próbka	Moduł sztywności, MPa				Kąt przesunięcia fazowego, °				D, °	
	10 Hz	8 Hz	5 Hz	2 Hz	1 Hz	10 Hz	8 Hz	5 Hz	2 Hz	1 Hz
5	19011	18657	17712	16144	14938	9,8	9,7	9,7	10,1	10,7
6	18986	18440	17448	15801	14590	10,1	10,1	10,0	10,3	10,8
11	18765	18325	17482	15994	14887	9,2	8,9	8,8	9,0	9,3
12	19464	18963	17999	16628	15408	8,9	8,7	8,5	8,8	9,3
15	19176	17869	16951	15241	13982	9,8	10,1	10,1	10,6	11,3
16	19591	18763	17579	15661	14207	10,2	9,9	10,0	10,6	11,5
17	17859	17343	16422	14941	13866	9,3	9,4	9,3	9,8	10,3
18	20425		19229			9,5		9,1		
25	16726		15349			10,4		10,3		
26	17570	17171	16212	14504	13248	10,6	10,7	10,9	11,6	12,3
41	19105		17999			9,3		9,0		
51	18122	17822	16933	15319	13932	10,3	9,9	9,8	10,5	11,2
52	18408	18266	17205	15441	14056	10,3	10,0	10,2	10,7	11,5
53	18813	18342	17347	15801	14524	10,2	9,9	9,8	10,3	10,7
54	20145	19694	18766	17135	15816	9,4	9,1	8,9	9,6	10,3
55	19005	18483	17625	16141	15004	9,2	9,0	8,8	9,1	9,5
56	18331	17938	17056	15566	14488	9,5	9,3	9,2	9,4	9,6
57	18866	18465	17419	15594	14312	10,5	10,3	10,3	10,7	11,3
58	18751	18332	17408	15698	14422	10,4	10,1	10,1	10,6	11,1
69	19177	18864	18070	16501	15345	9,4	9,3	9,1	9,3	9,6
71	18838	18385	17481	15839	14664	9,4	9,0	9,0	9,2	9,6
72	19854	19570	18710	17099	15840	9,1	8,7	8,5	8,9	9,4
81	18463	17964	17007	15240	13996	10,2	10,1	10,2	10,7	11,5
82	18003	17802	16860	15088	13618	10,9	10,5	10,5	11,3	12,0
Średnia	18810	18355	17428	15780	14531	9,8	9,6	9,6	10,0	10,6
Odch.st.	819	624	831	669	693	0,6	0,6	0,7	0,8	1,0
Min	20425	19694	19229	17135	15840	10,9	10,7	10,9	11,6	12,3
Max	16726	17171	15349	14504	13248	8,9	8,7	8,5	8,8	9,3
Wsp.zm.	4,4	3,4	4,8	4,2	4,8	5,7	6,3	7,1	8,2	9,0

Tablica 13 Wyniki badań IBDiM

Próbka	Moduł sztywności, MPa				Kąt przesunięcia fazowego, °				о, °	
	10 Hz	8 Hz	5 Hz	2 Hz	1 Hz	10 Hz	8 Hz	5 Hz	2 Hz	1 Hz
1	17855	18096	17344	16135	14854	3,5	4,1	4,5	6,3	7,6
2	18365	17917	16944	15178	14534	3,3	3,7	4,7	6,2	7,8
3	16962	17113	15673	13826	12601	5,3	5,8	7,6	9,3	11,6
4	15667	15332	14628	12948	11740	5,5	6,2	7,4	10,7	12,3
9	17073	16433	15455	13513	12506	6,2	6,0	7,7	10,2	11,2
10	17097	16330	15402	13970	12279	6,2	6,3	7,8	10,5	12,8
13	16808	16150	15342	13755	12578	6,1	6,2	6,7	10,1	11,1
14	17557	17104	16118	14665	13650	3,7	4,4	5,2	6,8	8,9
29	15283	14767	13657	12312	11204	6,4	5,6	7,6	9,9	11,6
30	17197	16156	15352	13503	11992	5,9	6,3	7,4	11,8	12,0
31	19297	18606	17240	15983	14871	2,7	3,6	5,2	8,0	9,1
32	19416	18680	18053	16607	15530	3,7	3,2	4,7	6,6	8,6
35	17768	16471	15053	14077	12817	4,4	5,5	6,5	8,7	9,3
36	17879	17814	16373	14958	14320	5,1	4,9	6,1	9,0	10,9
37	15866	15210	14127	12595	11448	6,8	6,4	8,4	10,6	12,2
38	15819	15857	15306	13818	12003	5,9	5,7	7,1	10,0	10,7
43	18180	18626	16984	15800	14780	4,0	3,9	5,8	6,9	7,3
44	20407	19771	18525	16881	15470	2,8	3,3	4,4	8,2	8,7
Średnia	17472	17024	15976	14473	13288	4,9	5,1	6,4	8,9	10,2
Odch.st.	1369	1398	1324	1374	1455	1,3	1,2	1,3	1,7	1,8
Min	20407	19771	18525	16881	15530	6,8	6,4	8,4	11,8	12,8
Max	15283	14767	13657	12312	11204	2,7	3,2	4,4	6,2	7,3
Wsp.zm.	7,8	8,2	8,3	9,5	11,0	27,8	23,0	20,8	19,5	17,5

Tablica 14 Wyniki badań LD Poznań

Próbka	Moduł sztywności, MPa					Ką	t przesu	nięcia f	azowego	D, °
	10 Hz	8 Hz	5 Hz	2 Hz	1 Hz	10 Hz	8 Hz	5 Hz	2 Hz	1 Hz
7	20800	23182	17343	15076	11100	2,0	8,6	7,1	5,5	5,1
8	14002	12876	11386	9973	9350	5,3	9,2	9,0	10,6	10,3
27	18536	16412	15026	14182	13023	4,9	4,2	2,8	7,0	9,2
28	24136	22514	18768	17114	14988	6,8	11,2	9,5	12,2	14,3
39	17392	16458	15827	13376	11789	5,7	5,8	10,5	9,8	11,0
40	18556	16801	15719	14309	9482	1,4	5,7	7,2	11,1	9,3
45	22182	17985	15567	13071	11707	7,4	7,7	9,7	11,8	9,7
46	20840	18750	16678	15183	13298	4,0	7,1	8,4	8,6	10,2
59	17155	15565	14548	10350	8829	0,4	6,0	9,2	12,5	12,2
60	21880	17500	17179	13976	12869	3,0	2,9	6,1	6,9	13,5
61	21610	18334	15538	14088	11748	3,5	7,4	7,6	14,7	16,3
62	19840	16428	11940	10402	9694	4,8	3,8	8,9	8,4	7,9
63	16452	15137	14000	11750	11179	6,8	8,1	6,9	9,4	10,4
64	21141	19462	16825	14330	10466	3,8	6,9	5,5	6,0	10,3
67	18752	13371	12053	12391	9663	3,4	4,1	5,3	6,1	7,5
68	20284	19507	15468	13927	9716	4,0	5,1	5,5	5,8	11,1
75	24955	21570	19170	15478	12818	7,0	6,5	9,2	10,8	12,2
76	25141	23621	20704	18079	17302	6,6	8,0	9,8	10,1	11,0
Średnia	20203	18082	15763	13725	11612	4,5	6,6	7,7	9,3	10,6
Odch.st.	2973	3138	2478	2188	2195	2,0	2,1	2,0	2,7	2,6
Min	25141	23621	20704	18079	17302	7,4	11,2	10,5	14,7	16,3
Max	14002	12876	11386	9973	8829	0,4	2,9	2,8	5,5	5,1
Wsp.zm.	14,7	17,4	15,7	15,9	18,9	45,4	32,2	26,5	28,9	24,1

Tablica 15 Wyniki badań Politechnika Wrocławska

Rysunek 11 Porównanie wyników modułu sztywności

Rysunek 12 Porównanie wyników kąta przesunięcia fazowego

6.4 Wyniki badań zmęczenia próbek BAWMS

W tablicach 16-19 zestawiono wyniki badań zmęczenia w poszczególnych laboratoriach oraz wartości obliczonych parametrów charakterystyk zmęczeniowych. Na rysunkach 13-15 przestawiono wykresy charakterystyk zmęczeniowych. Laboratorium BUDIMEX DROMEX nie dostarczyło wyników z powodu awarii sprzętu.

Próbka	ε, μm/m	E ₀	N
17	219,6	16409	46704
18	219,1	18874	31752
25	219,8	15647	35244
41	218,6	18007	23589
52	219,3	17490	41052
69	219,4	18986	86830
81	219,6	17319	87022
82	219,9	17141	36656
		Średnia	48 606
		Odchylenie	24 579
Współo	czynnik zmi	enności, %	50,6
5	164,8	17484	397234
6	164,5	1143	747295
11	164,2	18852	122321
12	164,6	18589	188367
16	164,5	18918	340628
26	164,4	19444	304107
51	164,5	18435	366239
72	164,5	19277	253609
		Średnia	339 975
		Odchylenie	188 597
Współo	zynnik zmi	enności, %	55,5
15	134,9	18352	1382525
42	139,2	20770	942258
53	134,6	18854	1704012
54	134,6	19324	567469
57	134,8	18784	1053737
58	134,9	18719	938858
		Średnia	1 129 862
	370 464		
Współo	32,8		

Tablica 16 Wyniki badań zmęczenia (IBDiM)

Próbka	ε, μm/m	E ₀	Ν				
1	217,8	18447	200290				
2	218,5	18684	134720				
3	218,9	17156	158480				
10	218,2	17313	207330				
13	218,0	16085	80660				
14	217,8	16488	59490				
35	218,3	20470	50240				
37	218,4	15902	131820				
38	218,4	16853	77220				
43	218,2	19363	33790				
	113 404						
	62 194						
Współo	czynnik zmi	enności, %	54,8				
30	134,6	17210	3130080				
31	134,6	19704	1408920				
36	134,2	18844	1416150				
	1 985 050						
	991 632						
Współo	Współczynnik zmienności, %						

Rysunek 14 Charakterystyka zmęczeniowa uzyskana w LD POZNAŃ

Próbka	ε, μm/m	Eo	Ν				
8	220	13734	365 499				
60	218	16408	56 499				
76	219	19018	182 500				
63	220	16103	29 999				
67	218	16917	32 499				
46	220	16973	146 499				
		Średnia	135 583				
	Odchylenie						
Współo	Współczynnik zmienności, %						
27	165	17020	1 017 499				
62	165	19515	988 999				
75	165	21262	848 905				
7	165	21545	146 499				
28	165	19473	151 501				
		Średnia	630 681				
	Odchylenie						
Współo	zynnik zmi	enności, %	70,5				
45	135	19 532	852999				
40	135	17 402	313999				
68	135	17 759	139999				
61	135	17 120	103533				
64	135	18 573	66499				
	Średnia						
	Odchylenie						
Współo	110,3						

Rysunek 15 Charakterystyka zmęczeniowa uzyskana na Politechnice Wrocławskiej

Parametr	IBDiM	LD POZNAŃ	Polit. Wrocław (1)	Polit. Wrocław (2)
А	1,03·10 ²⁰	1,54·10 ¹⁹	3,67·10 ⁹	1,62·10 ¹⁸
b	-6,56	-6,07	-1,92	-5,66
R^2	0,90	0,84	0,12	0,43
8 ₆	137	149	72	143
$\epsilon_{6(max)}^{1}$	147	165	134	168
$\epsilon_{6(min)}^2$	127	134	28	73

Tablica 19 Porównanie parametrów charakterystyk zmęczeniowych

¹⁾,²⁾ – wartości określające przedział ufności 95%

Wyniki Politechniki Wrocławskiej przedstawiono w dwóch wariantach: z uwzględnieniem wszystkich wyników (1) i po odrzuceniu wyników wątpliwych (2).

7 Analiza wyników

7.1 Moduł sztywności próbek SMA

Badania modułu sztywności w tej części pracy prowadzone były na tych samych belkach przekazywanych pomiędzy laboratoriami. Na podstawie uzyskanych wyników można stwierdzić, że:

- wykresy modułów sztywności mają typowy przebieg za wyjątkiem wyników z laboratorium BUDIMEX DROMEX, gdzie w niższych częstotliwościach widać wyraźne zakłócenia przebiegu wykresu,
- istotne różnice można zauważyć w wynikach pomiaru kąta przesunięcia fazowego, różnice są duże, charakter wykresów na podstawie wyników dla

laboratoriów BUDIMEXU i Politechniki Wrocławskiej jest przypadkowy i odbiega od typowej zależności, gdzie wzrost częstotliwości badania powoduje zmniejszenie wartości kąta przesunięcia fazowego,

- konsekwencją tych nieprawidłowych przebiegów są nieprawidłowości w przebiegu wykresów Blacka i Cole-Cole, jedynie wykresy IBDiM i LD Poznań mają kształty typowe dla mieszanek mineralno-asfaltowych,
- różnice w wynikach modułu sztywności w częstotliwości typowej dla tego badania (10 Hz) są na poziomie 10%,
- najniższe współczynniki zmienności uzyskano w badaniach IBDiM, w pozostałych laboratoriach były nieco wyższe, szczególnie w zakresie kąta przesunięcia fazowego.

7.2 Moduł sztywności belki referencyjnej

Badania modułu sztywności w tej części pracy prowadzone były na specjalnej belce referencyjnej z tworzywa sztucznego przekazywanej pomiędzy laboratoriami. Na podstawie uzyskanych wyników można stwierdzić, że:

- wykresy modułów sztywności mają typowy przebieg za wyjątkiem wyników z laboratorium BUDIMEX DROMEX, gdzie w niższych częstotliwościach widać wyraźne zakłócenia przebiegu wykresu,
- istotne różnice można zauważyć w wynikach pomiaru kąta przesunięcia fazowego, różnice są duże, szczególnie zaskakujące wyniki uzyskano w przypadku LD POZNAŃ, gdzie wartości są w wielu przypadkach ujemne,
- różnice w wynikach modułu sztywności w częstotliwości typowej dla tego badania (10 Hz) są na poziomie 5%,
- największe różnice w wynikach modułu sztywności występują w częstotliwości 20Hz, co może być sygnałem, że aparaty o zasilaniu pneumatycznym mają trudności w prawidłowej pracy w częstotliwościach wyższych od 10Hz,

 najniższe współczynniki zmienności uzyskano w badaniach IBDiM, w pozostałych laboratoriach były nieco wyższe, szczególnie w zakresie kąta przesunięcia fazowego.

7.3 Moduł sztywności próbek BAWMS

Badania modułu sztywności w tej części pracy prowadzone były na belkach z mieszanki typu BAWMS rozdzielonych pomiędzy laboratoria. Laboratorium BUDIMEX DROMEX nie dostarczyło wyników i nie jest objęte analizą. Na podstawie uzyskanych wyników można stwierdzić, że:

- najlepszą powtarzalność wyników, zarówno w zakresie modułu sztywności jak i kąta przesunięcia fazowego uzyskano w laboratorium IBDiM, natomiast największy rozrzut wyników uzyskano w laboratorium Politechniki Wrocławskiej,
- wykresy modułów sztywności oraz kąta przesunięcia fazowego mają typowy przebieg, przy czym w przypadku wyników z Politechniki i LD Poznań mają większe nachylenie niż w przypadku IBDiM,
- różnice w wynikach modułu sztywności w częstotliwości typowej dla tego badania (10 Hz) są na poziomie 5-10%.

7.4 Trwałość zmęczeniowa mieszanki BAWMS

Badania modułu sztywności w tej części pracy prowadzone były na belkach z mieszanki typu BAWMS rozdzielonych pomiędzy laboratoria. Laboratorium BUDIMEX DROMEX nie dostarczyło wyników i nie jest objęte analizą. Laboratorium IBDiM przedstawiło kompletny zestaw wyników 18 badań. W przypadku laboratorium Politechniki Wrocławskiej 2 próbki uległy zniszczeniu. Natomiast ostatnia seria badań przy odkształceniu 135 μm/m charakteryzowała się bardzo dużym rozrzutem wyników oraz odbiegała od wyników, które byłyby zgodne z oczekiwaniami i zbieżne z wynikami uzyskanymi w pozostałych laboratoriach. W przypadku LD Poznań pięć próbek uległo zniszczeniu. Podobne problemy sygnalizowało laboratorium BUDIMEX DROMEX przy największej amplitudzie. W większości przypadków zniszczenie następowało na początku badania. Należy tutaj podkreślić, że podobne przypadki nigdy się nie zdarzały w 7-letniej praktyce badań w IBDiM. Oczywiście

prawdopodobną przyczyną mogłyby być niedoskonałości w strukturze próbki lub jest uszkodzenie przed badaniem. Jednak bardziej prawdopodobnymi przyczynami są błędy w obsłudze aparatu: np. podczas zaciskania próbki, a przede wszystkim w działaniu samych urządzeń. W okresie początkowym badań cyklicznych w urządzeniach działających na zasadzie sprzężenia zwrotnego następuje stopniowe przybliżanie sygnału uzyskanego do sygnału komendy. Jeżeli parametry pracy urządzenia (tzw. tuning) są źle ustawione, to uzyskanie zamierzonego sygnału może następować z dużym opóźnieniem (lub nigdy może nie być uzyskane), a w innym przypadku może dojść do "przesterowania" tzn. do zadania zbyt dużego obciążenia co może właśnie zniszczyć próbkę. Należy również dodać, że w aparatach IPC i Cooper, możliwości ingerencji w ustawienia "tuningu" są ograniczone. Ograniczona jest również możliwość obserwacji sygnałów w czasie rzeczywistym. Na podstawie uzyskanych wyników można stwierdzić, że:

- najlepsze powtarzalności wyników uzyskano w laboratorium IBDiM oraz LD Poznań. W przypadku wyników z Politechniki Wrocławskiej rozrzuty były duże, a współczynniki zmienności przy poszczególnych poziomach odkształcenia wynosiły od 70 do 110%,
- konsekwencją rozrzutu wyników jest szerokość przedziału ufności obliczonego parametru ε₆: w przypadku IBDiM od 127 do 147 μm/m, LD Poznań od 134 do 165 μm/m, Politechniki Wrocławskiej od 73 do 168 μm/m (28-134 μm/m),
- wyniki uzyskane w LD Poznań są około 9% większe od uzyskanych w IBDiM, co należy uznać za dobrą zgodność wyników, w badaniach międzylaboratoryjnych w ramach komitetu RILEM rozrzuty były dużo większe[¹],
- również odrzucając wyniki Politechniki przy odkształceniu 135 μm/m uzyskuje się zgodny z pozostałymi laboratoriami wynik ε₆, przy szerszym przedziale ufności.

7.5 Wpływ bezwładności poruszającej się masy

Istotną różnicą pomiędzy normami PN-EN 12697-24 i -26 a normą AASHTO TP8-94, która dotychczas była stosowana w Polsce jest uwzględnienie w obliczeniach wpływu bezwładności poruszającej się masy. Dodatkowe badania, analizy i konsultacje z autorem normy EN pozwoliły stwierdzić, że w przypadku aparatury MTS nie ma

potrzeby uwzględniania wpływu masy poruszających się części aparatu. Natomiast uwzględnienie masy próbki zwiększa moduł sztywności o około 1%. W przypadku pozostałych aparatów konieczne jest uwzględnienie wszystkich poruszających się mas. Powoduje to zwiększenie modułu o około 3% (aparaty IPC) i około 8% w przypadku aparatu Coopera.

8 Podsumowanie

Podstawowym efektem pracy jest przegląd aparatury dostępnej w Polsce do badań metodą belki czteropunktowo zginanej, w ramach którego przeprowadzono weryfikację procedur stosowanych w laboratoriach oraz wdrożenie metodyki wg nowych norm PN-EN. Dostępna aparatura różni się pomiędzy sobą rozwiązaniami konstrukcyjnymi, oprogramowaniem, możliwości kontrolowania i sterowania przez operatora oraz rodzajem zasilania. Aparaty pneumatyczne IPC lub Cooper są urządzeniami prostszymi w obsłudze i działaniu od aparatury hydraulicznej MTS. Porównanie wyników IBDiM i LD Poznań pozwala jednak stwierdzić, że jest możliwe w pewnym zakresie uzyskanie odtwarzalnych wyników. Niezbędne jest jednak systematyczne i częste sprawdzanie poprawności działania sprzętu wg procedur opisanych w normach EN poprzez badania kontrolne na belkach referencyjnych. Uważamy, że wskazane jest również wyposażenie urządzeń IPC i Cooper w aparaturę lub oprogramowanie pozwalające obserwować zadane i uzyskane sygnały w czasie rzeczywistym, co pozwoli na natychmiastowe wykrycie nieprawidłowości w działaniu systemu. Na podstawie badań na belce referencyjnej można stwierdzić, że aparaty pneumatyczne gorzej działają w wyższej częstotliwości obciążenia. Dlatego też celowe jest zmniejszenie częstotliwości badań zaproponowanych w normie 13108-20, co było już kilkakrotnie zgłaszane w CEN TC227 także przez polskich reprezentantów.

Stwierdzono dobrą odtwarzalność wyników w typowych warunkach badania modułu sztywności (10°C, 10Hz). Natomiast w przypadku pomiaru kąta przesunięcia fazowego różnice są znaczne. Za wyjątkiem IBDiM, rozrzuty w wynikach tego parametru są bardzo duże. Przyczyną może być metoda pomiaru lub odbiegający od sinusoidy sygnał obciążenia. Najdokładniejsza metoda polega na pomiarze odstępu czasowego pomiędzy przejściami przez zero siły i przemieszczenia. W ten sposób działa MTS. Inny sposób to różnica w czasie pomiędzy wartościami szczytowymi tych sygnałów. W obu metodach najdokładniejsze wyniki są wtedy gdy wygląd sygnałów jest idealnym sinusem. Dlatego m.in. korzystne jest stosowanie oscyloskopów do obserwacji poprawności działania urządzenia. Bardziej zaawansowane metody polegają na zastosowania np. transformacji Fouriera. Prawdopodobną przyczyną jest również zniekształcenie sygnałów.

Pozytywnie należy ocenić porównanie wyników badania zmęczenia, pamiętając o problemach w niektórych laboratoriach. W tej części pracy jedno z laboratoriów nie dostarczyło z przyczyn technicznych wyników, co ogranicza zakres porównania. W badaniach zmęczeniowych mieszanek mineralno-asfaltowych rozrzuty wyników są zazwyczaj dość duże. Zależą od jednorodności struktury próbek (rozłożenie kruszywa w próbce), zagęszczenia, zawartości asfaltu i uziarnienia mieszanki. Najlepsza powtarzalność wyników uzyskiwana jest w mieszankach drobnoziarnistych o dużej zawartości asfaltu. Dodatkowym czynnikiem jest dokładność aparatury. Z tego powodu konieczne jest przestrzeganie wymaganej przez normy minimalnej liczby badań przy danym poziomie odkształcenia.

Reasumując, należy podkreślić, że wdrażane metody badań zmęczenia i modułu sztywności są badaniami trudnymi, wymagają od operatora sporej wiedzy i kultury technicznej. Jak pokazały doświadczenia z przeglądu laboratoriów, możliwe jest nieświadome popełnianie bardzo poważnych błędów w obsłudze i analizie wyników.

Podczas wdrażania tych metod w kolejnych laboratoriach konieczne jest szkolenie operatorów i prowadzenie badań porównawczych. W dalszej perspektywie należy dążyć do określenia dokładności powtarzalności i odtwarzalności, które nie są do tej pory podawane przez normy EN.

¹ Di Benedetto H., de La Roche C., Baaj H., Pronk A., Lundström R.: "Fatigue of bituminous mixtures: different approaches and RILEM group contribution" - PTEBM, Zurich 2003;