INSTYTUT BADAWCZY DRÓG I MOSTÓW Zakład Diagnostyki Nawierzchni

SPRAWOZDANIE

z realizacji pracy pt.: "Wpływ dokładności identyfikacji konstrukcji nawierzchni na wymiarowanie wzmocnienia dróg".

Zleceniodawca: Generalna Dyrekcja Dróg Krajowych i Autostrad Umowa Nr 1187/2005 z dnia 27.07.2005 roku

Opracował:

mgr inż. Tomasz MECHOWSKI mgr inż. Jacek SUDYKA mgr inż. Przemysław HARASIM inż. Adam KOWALSKI Jacek KUSIAK Radosław BORUCKI Artur GRĄCZEWSKI Kierownik Zakładu Diagnostyki Nawierzchni

mgr inż. Tomasz MECHOWSKI

Warszawa, październik 2006

Spis treści

1	Wstęp	6
2	Technika radarowa – teoria, zasada działania	7
2.1 2.2	Podstawy teoretyczne Przykład systemu pomiarowego GPR	7 10
3	Wytypowane odcinki badawcze	14
4	Określenie stanu konstrukcji nawierzchni przy pomocy odwiertów	15
5	Pomiary ugięć nawierzchni ugięciomierzem FWD	17
6	Określenie konstrukcji nawierzchni wytypowanych odcinków przy pomocy systemu radarowego SIR-20.	19
6.1	Analiza wyników pomiarów konstrukcji georadarem GPR	21
7	Podział odcinków na sekcje jednorodne.	25
7.1 7.2	Podział odcinków na sekcje jednorodne na podstawie odwiertów i pomiarów ugięć nawierzchni Podział odcinków na sekcje jednorodne na podstawie pomiarów georadarem GPR	27 37
8	Ocena trwałości zmęczeniowej nawierzchni odcinków w oparciu o rozpoznanie konstrukcji metodą klasyczną (odwierty) i przy pomocy techniki radarowej.	47
9	Porównanie wyników oceny trwałości zmęczeniowej dla poszczególnych odcinków oraz analiza wpływu jakości danych o konstrukcji nawierzchni na wymiarowanie wzmocnień	67
10	Wnioski	74
11	Bibliografia	76

Spis rysunków i tabel

Rysunek 1 Fala elektromagnetyczna przechodząca przez kolejne granice różnych materiałów	7
Rysunek 2 Zarejestrowane odbicia fali elektromagnetycznej	8
Rysunek 3 Głębokość penetracji w zależności częstotliwości anteny	10
Rysunek 4 Anteny o częstotliwościach 400MHz, 1,0 GHz i 2,2 GHz	11
Rysunek 5 Samochód pomiarowy z zainstalowanymi antenami 1,0 i 2,2 GHz	11
Rysunek 6 Zainstalowana w samochodzie jednostka centralna wraz z komputerem pomiarowym	12
Rysunek 7 Wózek pomiarowy z antenami 400MHz i 2,2GHz	12
Rysunek 8 Lokalizacja odcinków pomiarowych	15
Rysunek 9 Wiertnica spalinowa	16
Rysunek 10 Średnie grubości warstw dla poszczególnych odcinków pomiarowych	16
Rysunek 11 Ugięciomierz FWD	18
Rysunek 12 Schemat działania ugięciomierza	18
Rysunek 13 Ugięcia miarodajne wyznaczone dla poszczególnych odcinków	19
Rysunek 14 Profil konstrukcji uzyskany przy pomocy programu Road Doctor (A - zarejestrowany sygnał	
radarowy wraz z wynikami interpretacji, B – obliczona wartość stałej dielektrycznej, C – grubości warstw,	, D
– wysokość anteny nad nawierzchnią, E – zdjęcia próbek	20
Rysunek 15 Zmienność konstrukcji w przekroju poprzecznym na odcinku 9C, pikietaż 172+500 (dane z	
odwiertów)	22
Rysunek 16 Zmienność konstrukcji w profilu podłużnym na odcinku 8C, pas prawy (dane z odwiertów)	22
Rysunek 17 Porównanie grubości warstw asfaltowych wyznaczonych na podstawie odwiertów i zmierzony	vch
przy pomocy georadaru	23
Rysunek 18 Porównanie grubości warstw podbudowy wyznaczonych na podstawie odwiertów i zmierzony	/ch
przy pomocy georadaru	23
Rysunek 19 Różnice w ocenie grubości miedzy odwiertami kalibracyjnymi pomiarami radarowymi	24
Rysunek 20 Porównanie średnich grubości warstw asfaltowych przyjętych w modelach konstrukcji dla sek	cii
iednorodnych	26
Rysunek 21 Porównanie średnich grubości warstw podbudowy przyjetych w modelach konstrukcji dla sek	cii
iednorodnych	26
Rysunek 22 Wykres sum skumulowanych wraz z podziałem na sekcie jednorodne pod względem konstruk	cii
nawierzchni dla odcinka 1 A	28
nuwicizenin dia odenika 177 Rysunek 23 Wykres sum skumulowanych wraz z podziałem na sekcie jednorodne pod względem konstruk	20 cii
newierzebni dla odojnka 2 A	20
nawierzenni dia odenika ZA Rysunek 24 Wykres sum skumulowanych wraz z podziałem na sekcie jednorodne pod względem konstruk	2) cii
newierzebni dla odojnka 10C	30
nawicizenin dia odenika ioe Rysunak 25 Wykras sum skumulowanych wraz z podziałam na sakcja jadnorodna pod wzgladam konstruk	SU
newierzebni dla odejnka 11C	21
nawicizenin dia odenika i ie Dusunak 26 Wukras sum skumulawanyah wraz z podziałam na sakaja jadnorodna pod wzgladam konstruk	
novierzehni dle odeinke 4P	22
nawici zenini ula ouenika 4D Busunak 27 Wukras sum skumulawanyah wraz z nadziałam na sakaja jadnorodna nad wizgladam konstruk	52
newiorzahni dle odoinka 6C	22
nawierzenni uta ouenika oe Busunak 28 Wukras sum skumulawanyah wraz z nadziałam na sakaja jadnorodna nad wzgladam konstruk	55
Rysulek 26 w ykres sulli skullulowaliyeli wraz z pouzialelli na sekeje jeuloloulle pou wzgięueli kolistiuk nawiorzabni dla odojnka 70	21
nawierzenni uta ouenika /C Dugunali 20 Wultzeg gum algumulauganyak uzeg z nadziałam na galiają jednowodne nad uzgladam konstruk	- 34
Rysunek 29 w ykres sum skumutowanych wraz z podziatem na sekcje jednorodne pod wzgrędem konstruk	.cji
nawierzenni dia odeinka 80. Rusunali 20 Wultres sum algumulausanyak uroz z nadziałam na sakaja jadnarodna nad urzeladam konstrult	35
Rysunek 50 wykres sum skumulowanych wraz z podziałem na sekcje jednorodne pod względem konstruk	.cji
nawierzchni dia odcinka 90	30
Rysunek 31 Podział odcinka IA na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem	20
czerwonym i kolorem niebieskim) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)	38
Rysunek 32 Podział odcinka 2A na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem	•
niebieskim) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)	39
Rysunek 33 Podział odcinka 10C na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem	
zielonym) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)	40
Rysunek 34 Podział odcinka IIC na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem	
niebieskim) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)	41
Rysunek 35 Podział odcinka 4B na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem	
niebieskim) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)	42
Rysunek 36 Podział odcinka 6C na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem	
niebieskim) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)	43

Rysunek 37 Podział odcinka 7C na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem zielonym) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)	44
czerwonym i kolorem niebieskim) i na podstawie pomiaru GPR (oznaczono kolorem czarnym) Rysunek 39 Podział odcinka 9C na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem	45
czerwonym i kolorem niebieskim) i na podstawie pomiaru GPR (oznaczono kolorem czarnym) Rysunek 40 Porównanie średnich trwałości zmęczeniowych warstw asfaltowych obliczonych dla sekcji	46
jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych Rysunek 41 Porównanie średnich trwałości zmęczeniowych podłoża gruntowego obliczonych dla sekcji	68
jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych Rysunek 42 Porównanie średnich trwałości zmęczeniowych warstw asfaltowych obliczonych dla sekcji	68
jednorodných wyznaczoných na podstawie pomiarów radarowých na obu pasach ruchu Rysunek 43 Porównanie średnich trwałości zmęczeniowych podłoża gruntowego obliczonych dla sekcji jednorodnych wyznaczonych na podstawie pomiarów radarowych na obu pasach ruchu	69 70
Rysunek 44 Porównanie średnich grubości nakładek wzmacniających Rysunek 45 Porównanie grubości nakładek wzmacniajacych wg metody klasycznej i pomiarów radarowyc	70 71 ch
– odcinek 1A, pas prawy	72
Rysunek 46 Porównanie grubości nakładek wzmacniających wg metody klasycznej i pomiarów radarowyc – odcinek 8C, pas prawy	ch 72
Rysunek 47 Porównanie grubości nakładek wzmacniających wg metody klasycznej i pomiarów radarowyc – odcinek 11C. pas prawy	ch 72
Rysunek 48 Porównanie średnich grubości nakładek wzmacniających	74
Tabela 1 Typowe wartości stałych dielektrycznych dla materiałów badanych w warunkach laboratoryjnycl [BLA 92]	h 8
Tabela 2 Wybrane cechy konstrukcji, które mogą być zmierzone z wystarczającą dokładnością przez zastosowanie różnych typów radarów [HIG 02]	13
Tabela 3 Wytypowane odcinki pomiarowe	14
Tabela 4 Wyniki badań laboratoryjnych	17
Tabela 5 Układ warstw konstrukcyjnych odcinka 1A; km 161+600 ÷ 164+700	28
Tabela 6 Układ warstw konstrukcyjnych odcinka 2A; km $147+300 \div 148+500$	29
Tabela / Układ warstw konstrukcyjnych odcinka 10C, km $133+400 \div 134+400$	30
Tabela 8 Układ warstw konstrukcyjnych odcinka 11C; km $123+700 \div 127+000$	31
Tabela 9 Ukiad warstw konstrukcyjnych odcinka 4B; km $624+000 \div 628+000$, jezdnia prawa, pas	22
wewnętrzny Tabela 10 Ilkład warstw konstrukcyjnych odcinka 6C: km 624±000 ÷ 628±000 jezdnia prawa pas	32
rabela 10 Oklau warstw Konstrukcyjnych odcinka oc, kili 024+000 ÷ 020+000, jezulia prawa, pas	33
Tabela 11 Układ warstw konstrukcyjnych odcinka 7C km 655+400 – 659+600	34
Tabela 12 Układ warstw konstrukcyjnych odcinka 8C: km 132+000 – 138+000	
Tabela 13 Układ warstw konstrukcyjnych odcinka 9C, km $172+000 \div 175+100$	
Tabela 14 Układ warstw konstrukcyjnych odcinka 1A: km $161+600 \div 164+700$	
Tabela 15 Układ warstw konstrukcyjnych odcinka 2A: km $147+300 \div 148+500$	39
Tabela 16 Układ warstw konstrukcyjnych odcinka 10C, km $133+400 \div 134+400$.	40
Tabela 17 Układ warstw konstrukcyjnych odcinka 11C: km $123+700 \div 127+000$	41
Tabela 18 Układ warstw konstrukcyjnych odcinka 4B; km 624+000 ÷ 628+000, jezdnia prawa, pas wewnetrzny	42
Tabela 19 Układ warstw konstrukcyjnych odcinka 6C; km 624+000 ÷ 628+000, jezdnia prawa, pas	
zewnętrzny	43
Tabela 20 Układ warstw konstrukcyjnych odcinka 7C km 655+400 ÷ 659+600	44
Tabela 21 Układ warstw konstrukcyjnych odcinka 8C; km 132+000 ÷ 138+000	45
Tabela 22 Układ warstw konstrukcyjnych odcinka 9C, km $172+000 \div 175+100$	46
Tabela 23 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie	• -
pomiarów radarowych – odcinek 1A, (temperatura warstw asfaltowych w trakcie pomiaru 7-8°C)	48
I abela 24 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie	40
pomiarow radarowych – odcinek 2A, (temperatura warstw asfaltowych w trakcie pomiaru 14°C) Tabela 25 Moduły warstw dla sekcji jednorodnych wyznaczonych metoda klasyczna i na podstawie	49
pomiarów radarowych – odcinek 10C. (temperatura warstw asfaltowych w trakcie pomiaru 11-13°C)	
Tabela 26 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie	

pomiarów radarowych – odcinek 11C, (temperatura warstw asfaltowych w trakcie pomiaru 11-12°C)........51

Tabela 27 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie	
pomiarów radarowych - odcinek 4B, (temperatura warstw asfaltowych w trakcie pomiaru 6°C)52	2
Tabela 28 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie	
pomiarów radarowych - odcinek 6C, (temperatura warstw asfaltowych w trakcie pomiaru 7°C)53	3
Tabela 29 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie	
pomiarów radarowych - odcinek 7C, (temperatura warstw asfaltowych w trakcie pomiaru 7°C)54	4
Tabela 30 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie	
pomiarów radarowych - odcinek 8C, (temperatura warstw asfaltowych w trakcie pomiaru 6-7°C)55	5
Tabela 31 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie	
pomiarów radarowych - odcinek 9C, (temperatura warstw asfaltowych w trakcie pomiaru 6-8°C)56	5
Tabela 32 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą	
klasyczną i na podstawie pomiarów radarowych – odcinek 1A,	3
Tabela 33 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą	
klasyczną i na podstawie pomiarów radarowych – odcinek 2A,)
Tabela 34 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą	
klasyczną i na podstawie pomiarów radarowych – odcinek 10C,)
Tabela 35 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą	
klasyczną i na podstawie pomiarów radarowych – odcinek 11C,61	1
Tabela 36 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą	
klasyczną i na podstawie pomiarów radarowych – odcinek 4B,62	2
Tabela 37 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą	
klasyczną i na podstawie pomiarów radarowych – odcinek 6C,	3
Tabela 38 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą	
klasyczną i na podstawie pomiarów radarowych – odcinek 7C,	1
Tabela 39 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą	_
klasyczną i na podstawie pomiarów radarowych – odcinek 8C,	5
Tabela 40 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą	_
klasyczną i na podstawie pomiarów radarowych – odcinek 9C,	5
Tabela 41 Porównanie średnich trwałości zmęczeniowych warstw nawierzchni obliczonych dla sekcji	_
jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych	/
Tabela 42 Porównanie średnich grubości nakładek wzmacniających)
Tabela 43 Porównanie średnich grubości nakładek wzmacniających	3
Tabela 42 Porównanie średnich grubości nakładek wzmacniających) 3

1 Wstęp

Identyfikacja konstrukcji nawierzchni i podłoża jest podstawowym elementem procesu wymiarowania wzmocnienia nawierzchni drogowych. Właściwe rozpoznanie rodzaju grubości warstw konstrukcyjnych zapewnia odpowiednią jakość oceny stanu nawierzchni i wpływa bezpośrednio na poprawność obliczeń prowadzonych w trakcie opracowywania technologii wzmocnienia.

Czynnikiem decydującym o jakości otrzymywanych wyników, mającym największy wpływ na dokładność oceny konstrukcji nawierzchni, jest zmienność konstrukcji badanego odcinka drogi. Na odcinkach o małej zmienności konstrukcji wybór metody pomiarowej nie jest tak istotny jak w przypadku odcinków o dużej zmienności, na których zastosowanie jedynie metody klasycznej (wykonanie odwiertów) może doprowadzić do dużych błędów na etapie oceny nośności nawierzchni.

W Katalogu Wzmocnień [SYB 01] w ramach rozpoznania konstrukcji nawierzchni zaleca się wykonywanie odwiertów z częstotliwością nie rzadziej niż co 500 m. Na większości polskich dróg takie rozpoznanie konstrukcji często okazuje się być niewystarczające. Uwzględniając charakter naszych dróg (duża zmienność konstrukcji zarówno w profilu podłużnym jak i poprzecznym) okazuje się często, że uzyskane w ten sposób wyniki dają bardzo przybliżony obraz układu i rodzaju warstw. Stąd wynikają błędy takie jak niewłaściwy podział odcinka drogi na sekcje jednorodne pod względem konstrukcji czy zła ocena grubości poszczególnych warstw konstrukcyjnych. Tego rodzaju błędy wpływają bezpośrednio na dokładność przyjętego dla odcinka jednorodnego modelu obliczeniowego i w efekcie generują również błędy w mechanistycznym projektowaniu wzmocnienia nawierzchni.

Mając na uwadze powyższe wydaje się, że zastosowanie w procesie identyfikacji konstrukcji nawierzchni drogowej techniki dającej więcej informacji o jednorodności układu warstw konstrukcyjnych może dać wymierne efekty w ocenie i wymiarowaniu wzmocnień nawierzchni drogowych. Urządzeniami, przy pomocy których można precyzyjnie ocenić stan konstrukcji nawierzchni są systemy georadarowe GPR (Ground Penetrating Radar) wykorzystujące teorię propagacji fal elektromagnetycznych. Dzięki zaawansowanym rozwiązaniom możliwe jest precyzyjne rozpoznanie układu i grubości warstw. Dzieje się tak głównie dlatego, że w przeciwieństwie do metod klasycznych, w których wyniki badań uzyskiwane są punktowo, pomiary georadarami mają charakter liniowy. Brak ingerencji w nawierzchnię oraz szybkość prowadzonych pomiarów sprawiają, że badania radarowe można wykonywać w kilku torach pomiarowych, co umożliwia rozpoznanie konstrukcji nawierzchni również w przekroju poprzecznym.

Celem niniejszej pracy jest ocena wpływu jakości danych o konstrukcji nawierzchni na wymiarowanie wzmocnień nawierzchni. W niniejszej pracy zostanie dokonana ocena zakresu błędów jakie popełnia się podczas wymiarowania wzmocnień metodą mechanistyczną opartą na ocenie konstrukcji metodą odwiertów i z zastosowaniem techniki radarowej.

2 Technika radarowa – teoria, zasada działania

2.1 Podstawy teoretyczne

Metoda pomiaru radarowego GPR wymaga zrozumienia zasad propagacji fal elektromagnetycznych i pojęć z zakresu geofizyki. Gdy fala elektromagnetyczna przenika granicę dwóch materiałów o różnych właściwościach dielektrycznych, część z niej przechodzi przez granicę do nowego materiału, reszta zaś ulega rozproszeniu lub odbiciu (Rysunek 1).

Rysunek 1 Fala elektromagnetyczna przechodząca przez kolejne granice różnych materiałów

Gdy mamy do czynienia z materiałami o podobnych właściwościach dielektrycznych, większość energii fali przechodzi przez granicę między nimi, a tylko mała jej część zostaje odbita. Kiedy jednak materiały te znacznie różnią się między sobą względną przenikalnością dielektryczną, większa część transmitowanej energii odbija się, a odpowiednio mniejsza jej porcja przechodzi przez granicę do następnej warstwy. Zależność tą opisano między innymi w pracy [LIV 92]:

$$p = \left(\sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}}\right) / \left(\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}}\right)$$
(1)

w którym:

p - współczynnik odbicia,

 \mathcal{E}_{rl} -względna przenikalność dielektryczna warstwy 1,

 ε_{r2} -względna przenikalność dielektryczna warstwy 2.

Z wzoru (1) wynika, że gdy ε_{r1} będzie mniejsze od ε_{r2} , to współczynnik odbicia *p* będzie ujemny, jeżeli zaś ε_{r1} będzie większe od ε_{r2} , współczynnik *p* będzie dodatni. Odbity impuls może być w ten sposób w fazie lub przeciwfazie emitowanego sygnału elektromagnetycznego.

Rysunek 2 Zarejestrowane odbicia fali elektromagnetycznej

Tabela 1 zawiera typowe wartości stałych ε_r dla kilku rodzajów materiałów często stosowanych w budownictwie drogowym, gdzie najmniejsza wartość ε_r występuje dla powietrza ($\varepsilon_r = 1$), a największa dla wody ($\varepsilon_r = 81$). Zakres tych wartości dotyczy materiałów konstrukcyjnych badanych laboratoryjnie, natomiast w badaniach prowadzonych w terenie będą one zleżeć od takich czynników jak gęstości materiału, wilgotności, rodzaju kruszywa i typu spoiwa.

Materiał	Stała dielektryczna \mathcal{E}_r		
Powietrze	1		
Woda	81		
Piasek(suchy)	4-6		
Granit (suchy)	5		
Wapień (suchy)	7-9		
Beton portlandzki	6-11		
Beton asfaltowy	3-5		

Tabela 1 Typowe wartości stałych dielektrycznych dla materiałów badanych w warunkach laboratoryjnych [BLA 92]

Prędkość emitowanych fal przy przechodzeniu przez kolejne warstwy zmienia się wraz z właściwościami dielektrycznymi tych warstw. Prędkość jest wprost proporcjonalna do prędkości rozchodzenia się fali w wolnej przestrzeni a odwrotnie proporcjonalna do pierwiastka kwadratowego stałej dielektrycznej [MIL 95]. Zależność tą można przedstawić w postaci równania (2):

$$V = \frac{c}{\sqrt{\varepsilon_r}}$$
(2)

w którym:

 \mathcal{E}_r -stała dielektryczna,

c - prędkość rozchodzenia się fali w wolnej przestrzeni (300 tys km/s),

V- prędkość rozchodzenia się fali w danym materiale.

Jeżeli znamy prędkość rozchodzenia się fali oraz czas jej przejścia przez badaną warstwę możemy obliczyć grubość warstwy korzystając z przedstawionej poniżej zależności (3):

$$d = \frac{c}{\sqrt{\varepsilon_r}} * t$$
(3)

w której:

d - grubość badanej warstwy

c - prędkość rozchodzenia się fali w wolnej przestrzeni (300 tys km/s),

t - rzeczywisty czas osiągnięcia przez wysłany impuls zakładanej głębokości.

Innym parametrem, istotnym ze względu na potrzeby diagnostyki nawierzchni, jest częstotliwość emitowanej fali. Od częstotliwości fali zależy głębokość penetracji radarowej. Falami o wyższych częstotliwościach można penetrować mniejsze głębokości, lecz dzięki krótszej fali, z większą dokładnością. I odwrotnie, fale o niższych częstotliwościach stosuje się do badania większych głębokości, lecz z mniejszą dokładnością, spowodowaną większą długością fali. Zależność penetracji od częstotliwości fali emitowanej przez różne rodzaje anten przedstawiono w sposób schematyczny na Rysunku 3.

Rysunek 3 Głębokość penetracji w zależności częstotliwości anteny

2.2 Przykład systemu pomiarowego GPR

Georadarowy System Pomiarowy GRSP (GRoundSPy) jest urządzeniem przeznaczonym do badań grubości i rodzaju warstw konstrukcyjnych nawierzchni drogowych i podłoża gruntowego oraz do oceny stanu zbrojenia i betonu w płytach pomostów obiektów mostowych. Modułowa budowa systemu, jak również "otwarte" pod względem konfiguracji oprogramowanie sterujące, zwiększają zakres pomiarowy urządzenia. Dzięki zastosowanym w tym urządzeniu rozwiązaniom technologicznym możliwe jest również prowadzenie zaawansowanych prac badawczych związanych z oceną takich parametrów jak wilgotność konstrukcji nawierzchni, poziom zwierciadła wody gruntowej, głębokość przemarzania, lokalizacja pustek w nawierzchniach betonowych, lokalizacja przewodów czy stan skorodowania zbrojenia.

Urządzenie składa się z następujących elementów: zespołu zasilania, sterowania, zapisu i przetwarzania danych, jednostki centralnej SIR-20 wraz z komputerem oraz anten (Rysunek 4) o częstotliwości:

- 2,2 GHz (głębokość penetracji ok. 30 cm, rozdzielczość pionowa 2 3 cm),
- 1,0 GHz (głębokość penetracji ok. 70 cm, rozdzielczość pionowa 7 8 cm),
- 0,4 GHz (głębokość penetracji ok. 300 cm, rozdzielczość pionowa 20 cm).

Rysunek 4 Anteny o częstotliwościach 400MHz, 1,0 GHz i 2,2 GHz

Aparatura badawcza zainstalowana jest na specjalnie przygotowanym samochodzie pomiarowym (Rysunek 5 i 6), który stanowi integralną część systemu pomiarowego.

Rysunek 5 Samochód pomiarowy z zainstalowanymi antenami 1,0 i 2,2 GHz

Rysunek 6 Zainstalowana w samochodzie jednostka centralna wraz z komputerem pomiarowym

Dodatkowym elementem wyposażenia jest wózek pomiarowy (Rysunek 7), który stosowany jest między innymi do pomiarów geotechnicznych, a szczególnie tam gdzie nie jest możliwy pomiar z użyciem samochodu pomiarowego.

Rysunek 7 Wózek pomiarowy z antenami 400MHz i 2,2GHz

Zalety georadaru wykorzystywane są przez wiele agencji zajmujących się zarządzaniem sieciami drogowymi. Do najczęstszych aplikacji techniki radarowej należą pomiar grubości warstw, ocena pustek, lokalizacja obiektów w gruncie oraz bardziej skomplikowane, stosowane jako badania uzupełniające takie jak ocena rozwarstwień, pomiar głębokości "do zbrojenia", pomiar głębokości "do skały", ocena ubytków lepiszcza czy wymycia w pobliżu przyczółków mostów i wiaduktów [BEN 04]. Podstawowe możliwości pomiarowe systemów radarowych przedstawiono w Tabeli 2.

	prędkość pomiaru		charakterystyka radaru			
wybrane cechy	niska	wysoka	400-500 MHz	1 GHz	2,0 – 2,5 GHz	
	<20 km/h	>50 km/h	gp*	h*	h*	
zmiana konstrukcji	tak	tak	tak	jedynie do głębokości ok. 600 mm	jedynie do głębokości ok. 400 mm	
minimalna grubość zmierzonej warstwy	tak	tak	100 mm (200 mm dla warstwy wierzchniej)	50 mm dla wszystkich warstw	25 mm dla wszystkich warstw	
pustki pod niezbrojonymi płytami betonowymi	tak	tak **	tylko jeżeli głębokość pustki jest znaczna	tak bez możliwości oceny ilościowej	nie stwierdzono	
wilgotność podbudowy pomocniczej	tak	tak	tak	nie stwierdzono	zbyt mała głębokość penetracji	

Tabela 2 Wybrane cechy konstrukcji, które mogą być zmierzone z wystarczającą dokładnością przez zastosowanie różnych typów radarów [HIG 02]

*) antena typu gp (ground coupled) umieszczana jest bezpośrednio na powierzchni badanej konstrukcji, natomiast antena typu h (horn) ok. 45-50 cm nad badaną konstrukcją,

**) jeżeli wielkość pustki większa niż częstotliwość pomiaru

W ciągu kilku minionych lat opracowano w wielu krajach normy dotyczące wykorzystania georadaru w pomiarach grubości warstw nawierzchni oraz w pomiarach grubości warstw asfaltowych na pomostach. Jednak mimo zaawansowanej technologii oraz wysokiej jakości uzyskiwanych wyników wciąż nie udało się rozwiązać problemu automatycznego przetwarzania i interpretacji danych z pomiarów niejednorodnych i wielowarstwowych struktur takich jak np. konstrukcja nawierzchni drogi. W dalszym ciągu zdecydowana większość procesu przetwarzania i interpretacji danych musi być sterowana przez człowieka.

3 Wytypowane odcinki badawcze

Zgodnie z założeniami niniejszej pracy wytypowane odcinki powinny charakteryzować się zmienną trwałością zmęczeniową nawierzchni zarówno w obrębie odcinka jak i między odcinkami. Aby to osiągnąć na ok. 20 odcinkach przeprowadzono ocenę wizualną nawierzchni. Wyniki oceny stanowiły podstawę wyboru odcinków wytypowanych do dalszych badań. Spośród ocenianych odcinków wybrano 9 z nich o łącznej długości ok. 30 km. Wytypowane odcinki pomiarowe zestawiono w Tabeli 3 natomiast ich lokalizację w sposób poglądowy przedstawiono na Rysunku 8.

Oznaczenie	Drogonr	Odcinek			
odcinka	Dioga III	węzeł	pikietaż [km]		
naw	nawierzchnia podatna				
1A	DK-9	Zarębki - Kolbuszowa	$161 + 600 \div 164 + 700$		
2A	DK-73	Brzostek	$147 + 300 \div 148 + 500$		
naw	ierzchnia pó	łsztywna			
10C	DK-77	Zadąbrowie	$133 + 400 \div 134 + 400$		
11C	DK-16	Ostróda - Olsztyn	$123+700 \div 127+000$		
nawierzchnia mieszana					
4 P		Langut Przeworak	$624 + 000 \div 628 + 000$		
4D	DK-4	Lancut - Fizewoisk	jezdnia prawa, pas wew.		
60	DK 4		$624 + 000 \div 628 + 000$		
00	DK-4	Lancut – Fizewoisk	jezdnia prawa, pas zew.		
7C	7C DK-4 Jarosław - Radymno		$655 + 400 \div 659 + 600$		
8C	8C DK-9 Nagnajów – Tarnowska W		132+000 ÷ 138+000		
9C	DK-9	Kupno - Widełka	$172+000 \div 175+100$		

Tabela 3 Wytypowane odcinki pomiarowe

Zgodnie z założeniami odcinki pomiarowe charakteryzują się różną konstrukcją nawierzchni: na dwóch odcinkach występuje konstrukcja podatna (odcinki 1A i 2A), na kolejnych dwóch konstrukcja półsztywna (odcinki 10C i 11C) a na pozostałych podbudowa nawierzchni jest zmienna (odcinki 4B oraz 6C - 9C). Odcinki są różnej długości (od 1 do 6 km), tak aby zachowana była wystarczająca zmienność konstrukcji pod względem grubości warstw.

Rysunek 8 Lokalizacja odcinków pomiarowych

4 Określenie stanu konstrukcji nawierzchni przy pomocy odwiertów

W celu określenia konstrukcji nawierzchni wytypowanych odcinków pomiarowych na każdym z nich wykonano odwierty o średnicy 10 cm wiertnicą spalinową, którą przedstawiono na Rysunku 9. Na części odcinków wykorzystano również dane archiwalne. Łącznie dla wszystkich odcinków dysponowano informacjami o konstrukcji z 85 odwiertów, co daje średnią częstotliwość wykonanego w sposób klasyczny rozpoznania konstrukcji nawierzchni co ok. 400 m.

Jak wcześniej wspomniano odcinki pomiarowe charakteryzują się różną konstrukcją nawierzchni. Różnice te przedstawiono w sposób poglądowy na Rysunku 10, na którym widoczne są obliczone dla poszczególnych dla odcinków, średnie grubości pakietów warstw asfaltowych oraz podbudów. Grubości pakietów warstw asfaltowych wahają się średnio od 13 cm do 27 cm, natomiast grubości warstw podbudowy zmieniają się w zakresie od 16 cm do 23 cm. Podbudowę odcinków badawczych stanowia:

- w grupie nawierzchni podatnych kruszywo łamane stabilizowane mechanicznie lub tłuczeń,
- w grupie nawierzchni półsztywnych grunt lub kruszywo stabilizowane cementem lub chudy beton,
- w grupie nawierzchni mieszanych bruk, grunt lub kruszywo stabilizowane cementem, chudy beton lub kruszywo łamane stabilizowane mechanicznie.

Rysunek 9 Wiertnica spalinowa

Rysunek 10 Średnie grubości warstw dla poszczególnych odcinków pomiarowych

Na każdym odcinku wytypowano co najmniej po dwa odwierty, dla których w laboratorium wykonano oznaczenia: gęstości objętościowej i strukturalnej, zawartości asfaltu oraz wolnej przestrzeni. Wyniki z przeprowadzonych badań laboratoryjnych (Tabela 4) zostaną wykorzystane w obliczeniach trwałości zmęczeniowej nawierzchni. Badania i analizy wykonano zgodnie z Katalogiem Wzmocnień i Remontów Nawierzchni Podatnych i Półsztywnych (KWRNPP).

Oznaczenie odcinka	Oznaczenie próbki	Zawartość asfaltu	Zawartość asfaltu (objętościowo)	Zawartość wolnej przestrzeni	Zawartość kruszywa
		[% m/m]	[% v/v]	[% v/v]	[% v/v]
	1A1C	7,4	16,8	4,7	78,5
1A	1A2A	4,9	11,3	4,5	84,2
	1A2B	7,0	16,8	2,0	81,2
	2A1A	3,6	8,3	6,1	85,6
2A	2A1B	5,7	12,9	3,9	83,2
	2A2C	5,4	12,7	3,4	83,9
100	10C1A	6,5	14,6	3,2	82,2
100	10C2A	6,1	13,8	3,6	82,6
	11C1A	5,8	14,4	3,2	81,7
110	11C1B	5,6	13,2	1,7	88,5
IIC	11C2A	6,1	15,2	1,6	90,2
	11C1B	6,0	14,1	2,2	86,3
	4B1A	7,2	17,7	2,0	80,4
4B	4B1B	4,8	11,6	3,6	84,8
	4B2B	4,9	11,2	5,7	83,1
60	6C1B	6,4	14,8	6,3	79,0
00	6C2A	6,1	14,5	2,5	83,0
70	7C1A	4,9	11,8	6,1	82,1
	7C2A	5,0	12,8	2,8	84,5
	8C1A	3,5	7,9	8,3	83,8
	8C1B	6,1	15,6	0,4	84,0
°C	8C1C	6,5	15,7	2,9	81,4
oc	8C2A	5,9	13,5	8,0	78,5
	8C3A	5,8	14,2	2,9	82,9
	8C4A	3,2	7,0	11,3	81,8
00	9C2A	5,6	12,9	3,0	84,1
90	9C2B	6,2	15,2	1,6	83,2

Tabela 4 Wyniki badań laboratoryjnych

Wyniki odwiertów zestawiono w Załączniku 1 natomiast szczegółowe wyniki badań laboratoryjnych zestawiono w Załączniku 2.

5 Pomiary ugięć nawierzchni ugięciomierzem FWD

Pomiary przeprowadzono przy pomocy ugięciomierza dynamicznego FWD (Falling Weight Deflectometer, Rysunek 11), w którym ugięcie nawierzchni pod wpływem zadanego obciążenia mierzone jest za pomocą zestawu czujników ugięć (geofony). Umieszczone są one w centrum nacisku (płyta naciskowa z jednym czujnikiem) oraz w pewnych odległościach od punktu centralnego (np. 300, 600, 900, 1200, 1500 i 1800 mm). Schemat działania urządzenia przedstawiono na Rysunku 12.

Aparat FWD ma możliwość maksymalnego nacisku do 120 kN, symuluje nacisk wywierany przez samochód ciężarowy poruszający się z prędkością 35 - 40 km/h.

Rysunek 11 Ugięciomierz FWD

Aparat FWD sterowany jest procesorem pokładowym, a poprawność wyników uzyskiwanych w trakcie pomiarów kontrolowana jest na bieżąco przez komputer pokładowy.

Rysunek 12 Schemat działania ugięciomierza

Badania ugięć prowadzono zgodnie z KWRNPP tj. pomiary prowadzono w śladzie prawego koła, z krokiem pomiarowym 25m, przy temperaturze warstw asfaltowych w przedziale 5-25°C. Na dwóch odcinkach (2A i 4B) pomiary wykonano z krokiem

pomiarowym 50m. Zmiana kroku pomiarowego na tych odcinkach podyktowana była wyłącznie względami bezpieczeństwa ekipy pomiarowej.

Na Rysunku 13 przedstawiono średnie wartości ugięć dla poszczególnych odcinków. Oprócz wartości maksymalnych ugięć (tzw. czaszy ugięć) rejestrowano również przebiegi czasowe, które zostaną wykorzystane podczas obliczeń modułów.

Rysunek 13 Ugięcia miarodajne wyznaczone dla poszczególnych odcinków

Wyniki pomiarów ugięć zarejestrowanych na czujniku centralnym zestawiono w Załączniku 3.

6 Określenie konstrukcji nawierzchni wytypowanych odcinków przy pomocy systemu radarowego SIR-20.

Pomiary konstrukcji nawierzchni przeprowadzono Georadarowym Systemem Pomiarowym GRSP (opisano w punkcie 2.2). W pomiarach zastosowano antenę o częstotliwości 1,0 GHz, przy pomocy której można dokonać oceny konstrukcji nawierzchni do głębokości ok. 70 cm z dokładnością 7 – 8 cm.

Wyniki pomiarów (Załącznik 4) przedstawiono w formie profili wygenerowanych przy pomocy programu Road Doctor. Przykładowy profil konstrukcji nawierzchni przedstawiono na Rysunku 14 gdzie:

- profil A zarejestrowany sygnał radarowy wraz z wynikami interpretacji,
- profil B obliczona przez oprogramowanie wartość stałej dielektrycznej,
- profil C grubości warstw,
- profil D wysokość anteny nad nawierzchnią,
- profil E zdjęcia próbek.

Rysunek 14 Profil konstrukcji uzyskany przy pomocy programu Road Doctor (A - zarejestrowany sygnał radarowy wraz z wynikami interpretacji, B – obliczona wartość stałej dielektrycznej, C – grubości warstw, D – wysokość anteny nad nawierzchnią, E – zdjęcia próbek

Na profilach zamieszczono również informację o odwiertach kalibracyjnych (białe prostokąty na profilach A i C z opisaną kolorem niebieskim głębokością występowania warstwy) oraz o występujących na drodze przeszkodach.

6.1 Analiza wyników pomiarów konstrukcji georadarem GPR

Analiza uzyskanych w trakcie pomiarów danych wykazała kilka ograniczeń obu metod rozpoznania konstrukcji nawierzchni. Najistotniejsze z nich to te, które w znaczny sposób wpływają na dokładność uzyskanych danych, są to:

- wilgotność warstw konstrukcyjnych nawierzchni,
- lokalizacja odwiertów w przekroju poprzecznym i podłużnym.

Wilgotność warstw konstrukcyjnych nawierzchni ma istotny wpływ na prawidłową ocenę ilościową. Zwiększona zawartość wody w wolnych przestrzeniach warstw powoduje zakłócenia w uzyskiwanym obrazie radarowym w taki sposób, że nie jest możliwe określenie granic warstw niżej leżących. Warstwa o zwiększonej wilgotności działa jak ekran odbijający większość energii impulsu elektromagnetycznego emitowanego przez system radarowy.

W analizie danych GPR parametrem określającym stan zawilgocenia warstwy jest stała dielektryczna. Przyjmuje się, że wartość stałej dla warstw asfaltowych w warunkach suchych powinna wynosić od 3 do 6 a dla warstw podbudowy od 5 do 9. Wartość stałej powyżej 15 oznacza duże zawilgocenie badanej warstw.

W trakcie interpretacji danych z pomiarów GPR stwierdzono, że obliczana przez oprogramowanie stała dielektryczna dla pierwszych dwóch warstw jest wysoka. Na większości odcinków stała wynosi od 7 do 9 dla warstw asfaltowych i od 9 do 14 dla warstw podbudowy. Na odcinkach 6C i 9C stała dielektryczna warstw podbudowy wynosi powyżej 15. Tak wysokie wartości oznaczają zwiększoną wilgotność warstw a w przypadku odcinków 6C i 9C należy mówić o bardzo wysokiej wilgotności podbudowy.

Lokalizacja odwiertów, ich umiejscowienie w przekroju poprzecznym i podłużnym nawierzchni ma duże znaczenie w prawidłowej ocenie konstrukcji nawierzchni.

W ramach niniejszej pracy wykonano odwierty, które można podzielić na dwie grupy:

- odwierty niezależne, wykonane z częstotliwością ok. 500 m, zarówno w śladzie prawego koła jak i w osi pasa ruchu - wyniki odwiertów stanowiły podstawę podziału na sekcje jednorodne metodą CUSUM (opisano w p. 7.1)
- odwierty kalibracyjne wykonane w punktach wyznaczonych na podstawie pomiaru GPR, w śladzie prawego koła.

W przypadku odwiertów niezależnych na rodzaj przyjętej konstrukcji dla sekcji jednorodnej duży wpływ miało położenie odwiertu w przekroju poprzecznym. Niektóre odcinki charakteryzowały się bardzo dużą zmiennością konstrukcji w przekroju poprzecznym, zwłaszcza te z poboczem utwardzonym, na których wcześniej wykonano poszerzenie nawierzchni. Duża zmienność konstrukcji w przekroju poprzecznym widoczna jest na odcinkach 7C i 9C (Rysunek 15), na których stwierdzono zmiany zarówno pod względem grubości warstw jaki i rodzaju warstwy podbudowy.

Rysunek 15 Zmienność konstrukcji w przekroju poprzecznym na odcinku 9C, pikietaż 172+500 (dane z odwiertów)

O jakości rozpoznania konstrukcji metodą radarową decyduje między innymi dokładność określenia miejsca odwiertu względem wykonanego pomiaru radarowego oraz zmienność konstrukcji w profilu podłużnym. W przypadku odcinków o małej zmienności konstrukcji skorelowanie wyników z odwiertów i badań radarowych nie ma tak dużego znaczenia jak w przypadku odcinków o dużej zmienności. Przykładem ilustrującym stopień zmienności konstrukcji w profilu podłużnym może być odcinek 8C (Rysunek 16), gdzie między odwiertami wykonanymi w odległości 100 m grubość warstw asfaltowych zmienia się z 12 cm na 25,5 cm a warstw podbudowy zmienia się z 24 cm na 13 cm.

Rysunek 16 Zmienność konstrukcji w profilu podłużnym na odcinku 8C, pas prawy (dane z odwiertów)

Pomimo opisanych problemów związanych z interpretacją uzyskiwanych danych udało się uzyskać dość dobrą korelację między danymi z pomiarów radarowych a odwiertami kalibracyjnymi. Dla warstw asfaltowych współczynnik korelacji wyniósł 0,94 natomiast dla warstw podbudowy 0,91. Porównanie wyników pomiarów radarowych z danymi uzyskanymi z odwiertów kalibracyjnych przedstawiono na Rysunkach 17 i 18.

Rysunek 18 Porównanie grubości warstw podbudowy wyznaczonych na podstawie odwiertów i zmierzonych przy pomocy georadaru

Z oceny porównawczej wyłączono dane o grubościach warstw podbudowy z odwiertów 4B1 i 4B2 oraz dane o grubościach warstw z odwiertu 8C3. Wymienionych danych nie uwzględniono ponieważ na podstawie pomiaru radarowego wykonanego na odcinku 4B

nie udało się określić grubości warstw podbudowy i w dalszych obliczeniach przyjęto grubości podbudowy takie same jak dla sekcji jednorodnych wyznaczonych na podstawie metody CUSUM. Danych z odwiertu kalibracyjnego 8C3 nie uwzględniono w trakcie interpretacji pomiarów radarowych ponieważ w znaczny sposób odbiegają od wyników rozpoznania konstrukcji metodą klasyczną jak również od wyników pomiarów radarowych. Jednocześnie nie ustalono przyczyn tak znacznych różnic w grubościach warstw zarejestrowanych w tym odwiercie.

Poniżej (Rysunek 19) przedstawiono różnice w ocenie grubości warstw asfaltowych i podbudowy na podstawie odwiertów kalibracyjnych i pomiarów radarowych.

Rysunek 19 Różnice w ocenie grubości między odwiertami kalibracyjnymi pomiarami radarowymi

Z przedstawionych danych wynika, że największe różnice w ocenie grubości dotyczą warstw podbudowy. Dla wszystkich odwiertów średnia różnica w ocenie grubości warstw podbudowy wyniosła 1,6 cm, maksymalnie 5,6 cm. Dla warstw asfaltowych średnia różnica wyniosła 0,7 cm, maksymalnie 3,6 cm.

Głównymi przyczynami przedstawionych powyżej różnic są ograniczenia obu metod oceny konstrukcji nawierzchni. W przypadku metody klasycznej poważnym utrudnieniem jest prawidłowa ocena grubości warstw podbudowy gdy średnica wywierconego otworu wynosi 10 cm (odwierty tej średnicy są wykonywane najczęściej). W przypadku metody radarowej znacznym utrudnieniem są podobne właściwości dielektryczne różnych materiałów. Taka sytuacja często ma miejsce gdy warstwa asfaltowa została wbudowana np. na warstwie kruszywa związanego spoiwem asfaltowym. W takiej sytuacji grubości warstw asfaltowych z pomiarów radarowych są przeważnie większe od grubości zarejestrowanych na podstawie odwiertu.

7 Podział odcinków na sekcje jednorodne.

Podziału na sekcje jednorodne pod względem konstrukcji dokonano dwoma sposobami:

- metodą klasyczną w oparciu dane z odwiertów niezależnych (lokalizacja tych odwiertów nie została wcześniej ustalona), wykonanych co ok. 500 m oraz wyników pomiarów ugięć,
- na podstawie pomiarów radarowych z wykorzystaniem odwiertów kalibracyjnych.

W metodzie klasycznej posłużono się metodą sum skumulowanych ugięć (metoda CUSUM opisana w punkcie 7.1) zarejestrowanych na danym odcinku. Przyjęta metoda podziału pozwala na wstępne określenie odcinków jednorodnych dla poszczególnych pasów ruchu. Jest ona jednak obarczona pewnymi błędami, z których najistotniejszy jest ten, że odcinki jednorodne określane są tylko na podstawie ugięć, a informacje o konstrukcji nawierzchni z odwiertów zostają niejako "dopasowane" do proponowanego podziału.

Autorzy niniejszej pracy nie dotarli do opracowań weryfikujących dokładność zastosowanej metody, natomiast w publikacjach zagranicznych (np. w [BEU 98]) metoda sum skumulowanych wskazywana jest jako podstawowe narzędzie stosowane w wstępnym podziale odcinków na sekcje jednorodne. Należy podkreślić, że wobec braku dokładniejszych danych metoda sum skumulowanych jest wystarczająca do wstępnego określenia odcinków jednorodnych i powszechnie stosowana w praktyce drogowej.

W metodzie podziału na sekcje jednorodne opartej o wyniki pomiarów radarowych kryteriami decydującymi o podziale są:

- charakter sygnału radarowego wskazujący na zmienną ilość warstw konstrukcyjnych,
- wielkość amplitudy sygnału odbitego,
- wartość stałej dielektrycznej obliczonej dla pierwszej warstwy.

Na podstawie zaprezentowanych w punkcie 7.2 wyników można stwierdzić, że ocena konstrukcji metodą radarową daje możliwość precyzyjnego określenia odcinków jednorodnych a liniowy obraz grubości warstw nawierzchni pozwala na zwiększenie ilości sekcji jednorodnych bez konieczności wykonywania odwiertów. Na większości odcinków zmieniła się długość i liczba sekcji jednorodnych. Na niektórych odcinkach liczba sekcji nie zmieniła się, natomiast doszło do przesunięcia granic sekcji w stosunku do podziału opartego na odwiertach i pomiarze ugięć.

Aby zobrazować różnice w przyjętych modelach konstrukcji dla sekcji jednorodnych wyznaczonych obiema metodami dokonano porównania średnich grubości warstw asfaltowych i podbudowy dla odcinków (Rysunki 20 i 21).

Rysunek 20 Porównanie średnich grubości warstw asfaltowych przyjętych w modelach konstrukcji dla sekcji jednorodnych

Rysunek 21 Porównanie średnich grubości warstw podbudowy przyjętych w modelach konstrukcji dla sekcji jednorodnych

Z przedstawionych danych wynika, że największe różnice w przyjętych modelach konstrukcji są na odcinkach 1A, 2A i 10C. Na większości odcinków grubości warstw w przyjętych na podstawie pomiarów radarowych modelach konstrukcji są mniejsze niż te, wyznaczone na podstawie odwiertów.

Przedstawione porównanie ma charakter poglądowy. Dokładne dane o podziale na sekcje jednorodne i przyjętych dla sekcji modelach konstrukcji przedstawiono w punktach 7.1 i 7.2.

7.1 Podział odcinków na sekcje jednorodne na podstawie odwiertów i pomiarów ugięć nawierzchni

W praktycznej ocenie stanu nawierzchni zmierzone ugięcia wykorzystywane są nie tylko do obliczeń modułów, lecz również do wyznaczenia sekcji jednorodnych. Podział na sekcje pod względem ugięć stosuje się jako element pomocniczy w procesie rozpoznania konstrukcji nawierzchni. Stosowanie takiego podziału pozwala między innymi na wskazanie miejsc, w których należy wykonać odwierty.

Podziału odcinków na sekcje jednorodne dokonano wykorzystując wyniki metody sum skumulowanych. Metoda ta polega na obliczeniu wartości średniej ugięcia x dla odcinka, a następnie korzystając z przedstawionych poniżej zależności (4) oblicza się sumy skumulowane w poszczególnych punktach pomiarowych. Otrzymane dane nanosi się na wykres. Jako jednorodne przyjmuje się sekcje gdzie nachylenie wykresu sum skumulowanych jest stałe.

$$S_{1} = x_{i} - x$$

$$S_{2} = x_{2} - x + S_{1}$$

$$S_{i} = x_{i} - x + S_{i} - 1$$
(4)

w którym: S_i – suma skumulowana w punkcie i

 x_i – wartość ugięcia w punkcie i

x – średnie ugięcie dla odcinka obliczeniowego.

Na zamieszczonych poniżej rysunkach (Rysunki 22-30) przedstawiono dla każdego odcinka ostateczny podział na sekcje jednorodne pod względem konstrukcji nawierzchni, który dokonano w oparciu o wyniki odwiertów nawierzchni. Na tle tego podziału przedstawiono również wykresy sum skumulowanych.

Dla każdej wyznaczonej sekcji określono układ warstw konstrukcyjnych, który będzie stanowił model obliczeniowy w ocenie trwałości zmęczeniowej nawierzchni. Przyjęte dla poszczególnych sekcji modele konstrukcji nawierzchni zestawiono w Tabelach 5-13.

W niektórych przypadkach zachodziła konieczność wyznaczenia jednakowej konstrukcji dla wszystkich pasów ruchu. Przyczyny takiego postępowania były następujące:

- konstrukcja nawierzchni w przekroju poprzecznym była jednorodna (odcinek 7C),
- konstrukcja nawierzchni była tak bardzo zmienna, że konieczne było przyjęcie średniej konstrukcji dla przekroju poprzecznego nawierzchni (odcinek 10C) lub
- brakowało dokładnej informacji na temat lokalizacji odwiertów w przekroju poprzecznym (odcinek 11C).

Rysunek 22 Wykres sum skumulowanych wraz z podziałem na sekcje jednorodne pod względem konstrukcji nawierzchni dla odcinka 1A

Sekcja	Sekcja Pikietaż [km] Rodzaj warstwy		Grubość warstwy [cm]					
	pas prawy							
Ар	161+600÷162+825	pakiet warstw asfaltowych kruszywo łamane podłoże gruntowe	25,0 15,0					
Вр	162+825÷164+700	pakiet warstw asfaltowych kruszywo łamane podłoże gruntowe	24,0 26,0					
	pas lewy							
Al	161+600÷163+050	pakiet warstw asfaltowych kruszywo łamane podłoże gruntowe	24,0 25,0					
Bl	163+050÷164+700	pakiet warstw asfaltowych kruszywo łamane podłoże gruntowe	15,0 26,0					

Tabela 5 Układ warstw konstrukcyjnych odcinka 1A; I	km 161+600 ÷ 164+700
---	----------------------

Rysunek 23 Wykres sum skumulowanych wraz z podziałem na sekcje jednorodne pod względem konstrukcji nawierzchni dla odcinka 2A

Sekcja	Pikietaż [km]	Rodzaj warstwy	Grubość warstwy [cm]
A 147+300 ÷ 147+600 pakiet warstv podłoże grur		pakiet warstw asfaltowych tłuczeń podłoże gruntowe	33,0 22,0
В	147+600 ÷ 147+850	pakiet warstw asfaltowych tłuczeń podłoże gruntowe	22,0 20,0
С	147+850 ÷ 148+200	pakiet warstw asfaltowych tłuczeń podłoże gruntowe	22,0 22,0
D	148+200 ÷ 148+500	pakiet warstw asfaltowych tłuczeń podłoże gruntowe	22,0 12,0

Tabela 6 Układ warstw konstrukcyjnych odcinka 2A; km 14/+300 ÷ 148+500	Tabela 6 Układ	warstw konstru	kcyinych c	odcinka 2A; k	km 147+300 ÷	148+500
--	----------------	----------------	------------	---------------	--------------	---------

Rysunek 24 Wykres sum skumulowanych wraz z podziałem na sekcje jednorodne pod względem konstrukcji nawierzchni dla odcinka 10C

Sekcja	Pikietaż [km]	Rodzaj warstwy	Grubość warstwy [cm]
		pakiet warstw asfaltowych	17,0
Α	133+400÷133+850	chudy beton + kruszywo łamane	38,0
		podłoże gruntowe	
		pakiet warstw asfaltowych	28,0
В	133+850÷134+100	kruszywo łamane	34,0
		podłoże gruntowe	
		pakiet warstw asfaltowych	33,0
С	134+100÷134+400	kruszywo łamane	25,0
		podłoże gruntowe	

								/ /
Tahela 7	likład	warstw	konstrukov	invch	odcinka	10C km	$133+400 \div$	134 + 400
rabcia /	UKIGG	** GI 51 **	KOI ISII OKC J		ouclinka	10C, KIII	100.400.	104 400.

Rysunek 25 Wykres sum skumulowanych wraz z podziałem na sekcje jednorodne pod względem konstrukcji nawierzchni dla odcinka 11C

Sekcja	Pikietaż [km]	Rodzaj warstwy	Grubość warstwy [cm]
Α	123+728 ÷ 124+350	pakiet warstw asfaltowych stabilizacja cementem podłoże gruntowe	14,0 23,0
В	124+350 ÷ 124+900	pakiet warstw asfaltowych stabilizacja cementem podłoże gruntowe	14,0 23,0
С	124+900 ÷ 125+500	pakiet warstw asfaltowych stabilizacja cementem podłoże gruntowe	14,0 23,0
D	125+500 ÷ 126+050	pakiet warstw asfaltowych stabilizacja cementem+tłuczeń podłoże gruntowe	14,0 26,0
E	126+050 ÷ 127+000	pakiet warstw asfaltowych stabilizacja cementem podłoże gruntowe	12,0 25,0

	Tabela 8 Układ	warstw konstru	kcyinych odcinka	11C; km	123+700 ÷	127+000
--	----------------	----------------	------------------	---------	-----------	---------

Rysunek 26 Wykres sum skumulowanych wraz z podziałem na sekcje jednorodne pod względem konstrukcji nawierzchni dla odcinka 4B

Tabela 9 Uk	kład wa	rstw ko	nstrukcyjny	rch odd	cinka 41	B; km 62	24+000÷	628+000,
je	zdnia pi	rawa, p	bas wewnę	trzny				

Sekcja	Pikietaż [km]	Rodzaj warstwy	Grubość warstwy [cm]		
	pas wewnętrzny				
А	624+000÷625+700	pakiet warstw asfaltowych chudy beton podłoże gruntowe	13,0 23,0		
В	625+700÷627+550	pakiet warstw asfaltowych chudy beton podłoże gruntowe	15,0 15,0		
С	627+550÷628+000	pakiet warstw asfaltowych chudy beton podłoże gruntowe	16,0 19,0		

Rysunek 27 Wykres sum skumulowanych wraz z podziałem na sekcje jednorodne pod względem konstrukcji nawierzchni dla odcinka 6C

Tabela	10 Układ warstw	konstrukcyjnych	odcinka 6C	;; km 62	4+000 ÷ 6	528+000,
	jezdnia prawa,	, pas zewnętrzny				

Sekcja	Pikietaż [km]	Rodzaj warstwy	Grubość warstwy [cm]
		pas zewnętrzny	
Α	624+046÷624+775	pakiet warstw asfaltowych kruszywo łamane podłoże gruntowe	10,0 26,0
В	624+775÷625+275	pakiet warstw asfaltowych chudy beton podłoże gruntowe	15,0 19,0
С	625+275÷626+275	pakiet warstw asfaltowych kruszywo łamane podłoże gruntowe	28,0 50,0
D	626+275÷628+000	pakiet warstw asfaltowych chudy beton podłoże gruntowe	15,0 15,0

Rysunek 28 Wykres sum skumulowanych wraz z podziałem na sekcje jednorodne pod względem konstrukcji nawierzchni dla odcinka 7C

Sekcja	Pikietaż [km]	Rodzaj warstwy	Grubość warstwy [cm]
		pakiet warstw asfaltowych	16,0
Α	655+400÷658+024	bruk+żwir+kruszywo naturalne	46,0
		podłoże gruntowe	
		pakiet warstw asfaltowych	27,0
В	658+024÷659+600	bruk+żwir+kruszywo naturalne	49,0
		podłoże gruntowe	

Tabela TT Układ warstw konstrukcyjnych odcinka / C km 655+400 ÷ 659+60	Tabela 11 Układ warstw	konstrukcyjnych	odcinka 7C km	655+400 ÷ 659+600
--	------------------------	-----------------	---------------	-------------------

Rysunek 29 Wykres sum skumulowanych wraz z podziałem na sekcje jednorodne pod względem konstrukcji nawierzchni dla odcinka 8C

Sekcja	Pikietaż [km]	Rodzaj warstwy	Grubość warstwy [cm]
		pas prawy	
Ар	132+000÷134+500	pakiet warstw asfaltowych chudy beton podłoże gruntowe	14,0 25,0
Вр	134+500÷135+600	pakiet warstw asfaltowych kruszywo łamane podłoże gruntowe	19,0 26,0
Ср	135+600÷138+000	pakiet warstw asfaltowych kruszywo łamane podłoże gruntowe	15,0 30,0
		pas lewy	
Al	132+000÷134+550	pakiet warstw asfaltowych chudy beton podłoże gruntowe	14,0 25,0
Bl	134+550÷136+125	pakiet warstw asfaltowych kruszywo łamane podłoże gruntowe	17,0 20,0
Cl	136+125÷137+800	pakiet warstw asfaltowych kruszywo łamane podłoże gruntowe	26,0 20,0
DI	137+800÷138+000	pakiet warstw asfaltowych kruszywo łamane podłoże gruntowe	21,0 30,0

Tabela 12 Układ warstw	konstrukcyjnych	odcinka 8C; km	132+000 ÷ 138+000
------------------------	-----------------	----------------	-------------------

Rysunek 30 Wykres sum skumulowanych wraz z podziałem na sekcje jednorodne pod względem konstrukcji nawierzchni dla odcinka 9C

Sekcja	Pikietaż [km]	Rodzaj warstwy	Grubość warstwy [cm]							
pas prawy										
Ар	172+000÷172+650	pakiet warstw asfaltowych kruszywo łamane podłoże gruntowe	37,0 32,0							
Вр	172+650÷173+100	pakiet warstw asfaltowych kruszywo łamane podłoże gruntowe	15,0 48,0							
Ср	173+100÷174+275	pakiet warstw asfaltowych chudy beton podłoże gruntowe	29,0 20,0							
Dp	174+275÷175+100	pakiet warstw asfaltowych chudy beton podłoże gruntowe	14,0 21,0							
pas lewy										
Al	172+000÷172+550	pakiet warstw asfaltowych chudy beton podłoże gruntowe	17,0 27,0							
Bl	172+550÷173+700	pakiet warstw asfaltowych chudy beton + kruszywo łamane podłoże gruntowe	28,0 14,0							
Cl	173+700÷175+100	pakiet warstw asfaltowych kruszywo łamane podłoże gruntowe	36,0 25,0							

Tabela	13 Układ	warstw	konstrukc	vinvch	odcinka	9C, k	m 172+000) ÷ 175+100
	10 010 0 0				0000	/ 0/ 10		170 100
7.2 Podział odcinków na sekcje jednorodne na podstawie pomiarów georadarem GPR

Na podstawie analizy pomiarów georadarowych (Załącznik 4) dokonano podziału odcinków na sekcje jednorodne. Jak wcześniej wspomniano kryteriami decydującymi o podziale odcinka na sekcje były:

- charakter sygnału radarowego wskazujący na zmienną ilość warstw konstrukcyjnych,
- wielkość amplitudy sygnału odbitego,
- wartość stałej dielektrycznej obliczonej dla pierwszej warstwy.

Na zamieszczonych poniżej Rysunkach 31-39 przedstawiono dla każdego odcinka ostateczny podział na sekcje jednorodne pod względem konstrukcji nawierzchni, który dokonano w oparciu o wyniki pomiarów konstrukcji nawierzchni metodą radarową (odcinki jednorodne oznaczono Ap i $A_L z$ indeksem 1).

Na wykresach przedstawiono również sposób podziału na sekcje jednorodne na podstawie odwiertów i wyników pomiarów ugięć (odcinki jednorodne oznaczono Ap i A₁).

Dla każdej wyznaczonej sekcji określono układ warstw konstrukcyjnych, który będzie stanowił model obliczeniowy w ocenie trwałości zmęczeniowej nawierzchni. Przyjęte dla poszczególnych sekcji modele konstrukcji nawierzchni zestawiono w Tabelach 14-22.

Na kilku odcinkach (4B, 6C sekcja C_1 oraz 9C pas lewy) nie udało się określić grubości warstw podbudowy na podstawie uzyskanego sygnału radarowego. Na tych odcinkach przyjęto grubości warstw podbudowy jak dla odcinków wyznaczonych na podstawie odwiertów. Dokonane zmiany oznaczono w poniższych tabelach kolorem czerwonym.

Rysunek 31 Podział odcinka 1A na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem czerwonym i kolorem niebieskim) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)

Odcinek	Sekcja	Pikieta	aż [km]	Grubości warstw [cm]		
		od	do	asfaltowych	podbudowy	
	Ap ₁	161,600	161,750	22,3	23,2	
rawy	Bp₁	161,750	162,850	24,0	23,8	
as p	Cp ₁	162,850	163,300	26,3	23,6	
IA, p	Dp₁	163,300	163,850	29,4	17,7	
, t	Ep1	163,850	164,700	21,7	26,0	
	A _{L1}	161,600	162,100	17,8	18,9	
ewy	B _{L1}	162,100	162,900	17,9	21,7	
pasl	C _{L1}	162,900	163,200	12,1	28,6	
1A, I	D _{L1}	163,200	164,300	14,3	30,8	
	E _{L1}	164,300	164,700	13,8	20,8	

Tabela 14 Układ warstw konstrukcyjnych odcinka 1A; km 161+600 ÷ 164+700

Rysunek 32 Podział odcinka 2A na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem niebieskim) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)

Odcinek	Sekcja	Pikieta	aż [km]	Grubości warstw [cm]		
		od	do	asfaltowych	podbudowy	
Ś	Ap ₁	147,300	147,600	25,1	24,1	
s pra	Bp₁	147,600	147,800	15,3	33,5	
, pas	Cp₁	147,800	148,000	23,7	26,4	
2A	Dp ₁	148,000	148,500	20,3	19,8	
۲,	A _{L1}	147,300	147,600	18,1	17,3	
s lew	B _{L1}	147,600	147,800	21,8	21,6	
A pa	C _{L1}	147,800	148,000	13,9	24,4	
5	D _{L1}	148,000	148,500	15,7	14,8	

Tabela 15 Układ warstw konstrukcyjnych odcinka 2A; km 147+300 ÷ 148+500

Rysunek 33 Podział odcinka 10C na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem zielonym) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)

Odcinek	Sekcja	Pikieta	aż [km]	Grubości warstw [cm]		
		od do		asfaltowych	podbudowy	
awy	Ap ₁	133,400	133,850	19,4	26,8	
pas pi	Bp ₁	133,850	134,150	26,4	27,4	
10C,	Cp ₁	134,150	134,400	15,2	33,9	
wy	A _{L1}	133,400	133,650	19,1	36,4	
as le	B _{L1}	133,650	133,900	14,4	38,9	
C, pi	C _{L1}	133,900	134,050	17,4	33,7	
10	D _{L1}	134,050	134,400	15,1	28,1	

Tabela 16 Układ warstw konstrukcyjnych odcinka 10C, km 133+400 ÷ 134+400.

Rysunek 34 Podział odcinka 11C na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem niebieskim) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)

Odcinek	Sekcja	Pikieta	aż [km]	Grubości warstw [cm]		
		od	do	asfaltowych	podbudowy	
	Ap ₁	123,700	124,100	15,6	17,8	
W W	Bp ₁	124,100	124,900	10,8	32,7	
s pra	Cp ₁	124,900	125,150	23,4	29,2	
C, pa	Dp ₁	125,150	125,325	20,8	20,5	
110	Ep₁	125,325	126,100	11,8	22,1	
	Fp₁	126,100	127,000	9,1	31,4	
Ŵ	A _{L1}	123,700	124,900	11,8	23,0	
as le	B _{L1}	124,900	125,100	20,2	27,3	
ů Ú	C _{L1}	125,100	126,150	14,0	20,3	
	D _{L1}	125,150	127,000	9,4	28,9	

Tabela 17	Układ	warstw	konstrukc	vinvch	odcinka	11C: km	123+700 ÷	127+000
	01000		10011011010		0000	110,1011	120 / 00	12/ 000

Rysunek 35 Podział odcinka 4B na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem niebieskim) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)

Tabela 18 Układ warstw konstrukcyjnych odcinka 4B; km 624+000 ÷ 628+000, jezdnia prawa, pas wewnętrzny

Odcinek	Sekcja	Pikieta	aż [km]	Grubości warstw [cm]		
		od	do	asfaltowych	podbudowy	
	A ₁	624,000	624,450	16,9	20,5	
	B ₁	624,450	624,950	18,5	20,5	
۵	C ₁	624,950	625,950	12,1	20,5	
4	D ₁	625,950	626,950	13,6	16,0	
	E ₁	626,950	627,300	16,6	20,5	
	F ₁	627,300	628,000	16,1	14,5	

Rysunek 36 Podział odcinka 6C na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem niebieskim) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)

Tabela 19 Układ warstw konstrukcyjnych odcinka 6C; km 624+000 ÷ 628+000, jezdnia prawa, pas zewnętrzny

Odcinek	Sekcja	Pikieta	aż [km]	Grubości warstw [cm]		
		od	do	asfaltowych	podbudowy	
90	A ₁	624,000	625,275	13,6	11,1	
	B ₁	625,275	625,950	16,0	23,7	
	C ₁	625,950	626,750	13,1	25,0	
	D ₁	626,750	628,000	14,3	19,2	

Rysunek 37 Podział odcinka 7C na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem zielonym) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)

Odcinek	Sekcja	Pikieta	aż [km]	Grubości warstw [cm]		
		od	od do		podbudowy	
wy	Ap ₁	655,400	657,000	6,8	20,1	
s pra	Bp₁	657,000	658,000	13,9	16,5	
, pas	Cp ₁	658,000	658,900	14,8	23,6	
7C	Dp ₁	658,900	659,600	18,8	17,9	
s lewy	A _{L1}	655,400	658,000	12,5	24,0	
7C, pas	B _{L1}	658,000	659,600	10,7	28,1	

Tabela 20 Układ warstw konstrukcyjnych odcinka 7C km 655+400 ÷ 659+600

Rysunek 38 Podział odcinka 8C na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem czerwonym i kolorem niebieskim) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)

Odcinek	Sekcja	Pikieta	aż [km]	Grubości warstw [cm]		
		od do		asfaltowych	podbudowy	
	Ap ₁	132,000	133,300	13,9	11,2	
	Bp₁	133,300	134,300	14,4	18,8	
Ŵ	Cp₁	134,300	134,900	16,7	15,4	
s pra	Dp ₁	134,900	135,300	10,9	21,2	
, pas	Ep₁	135,300	135,800	16,2	14,4	
8C	Fp₁	135,800	136,900	19,1	18,4	
	Gp₁	136,900	137,600	16,1	14,5	
	Hp₁	137,600	138,000	12,8	18,4	
	A _{L1}	132,000	133,000	15,3	14,7	
lewy	B _{L1}	133,000	134,400	13,2	15,4	
pas	C _{L1}	134,400	135,800	18,5	16,9	
8C,	D _{L1}	135,800	137,700	17,9	25,3	
	E _{L1}	137,700	138,000	9,4	17,0	

Tabala 21	Ilklad	waretw	konstruko	vinych	adainka	OC. Km	122+000 -	1201000
	UNIQU	vv ui si vv	KOUSHUKC	ујпусп	UUCIIIKU	OC, KIII	132+000 -	130+000

Rysunek 39 Podział odcinka 9C na sekcje jednorodne na podstawie odwiertów (oznaczono kolorem czerwonym i kolorem niebieskim) i na podstawie pomiaru GPR (oznaczono kolorem czarnym)

Odcinek	Sekcja	Pikieta	aż [km]	Grubości warstw [cm]		
		od do		asfaltowych	podbudowy	
	Ap₁	172,000	172,650	12,4	19,3	
	Bp ₁	172,650	173,930	16,1	13,0	
rawy	Cp ₁	173,930	174,050	10,4	11,8	
as p	Dp ₁	174,050	174,430	8,2	12,8	
C, p	Ep₁	174,430	174,640	7,6	21,1	
0,	Fp₁	174,640	174,740	10,5	17,1	
	Gp₁	174,740	175,000	12,0	14,7	
	A _{L1}	172,000	173,050	16,6	20,0	
Ş	B _{L1}	173,050	173,550	20,9	20,0	
is lev	C _{L1}	173,550	174,170	18,2	25,0	
c, pa	D _{L1}	174,170	174,430	23,7	25,0	
6	E _{L1}	174,430	174,760	26,6	25,0	
	F _{L1}	174,760	175,100	22,2	25,0	

Tabela 22 Układ warstw konstrukcyjnych odcinka 9C, km 172+000 ÷ 175+100

8 Ocena trwałości zmęczeniowej nawierzchni odcinków w oparciu o rozpoznanie konstrukcji metodą klasyczną (odwierty) i przy pomocy techniki radarowej.

Ocenę trwałości zmęczeniowej nawierzchni przeprowadzono z wykorzystaniem metody mechanistycznej, wg procedury przedstawionej w Katalogu Wzmocnień [SYB 01]. W metodzie tej konieczne jest określenie modelu obliczeniowego reprezentującego układ warstw o określonej grubości na podłożu gruntowym o nieskończonej grubości. Przyjmuje się, że jest to układ warstw sprężystych położonych na półprzestrzeni sprężystej. Warstwy modelu obliczeniowego charakteryzowane są przez następujące parametry:

- grubość warstw,
- moduł sztywności (sprężystości),
- współczynnik Poissona.

W ramach niniejszej pracy grubości warstw nawierzchni badanych odcinków określono dwoma metodami: metodą klasyczną i na podstawie pomiarów radarowych. Na podstawie wyników badań wyznaczono sekcje jednorodne, dla których przyjęto grubości warstw (opisano w punkcie 7). Przyjęte w ramach sekcji konstrukcje będą stanowiły modele obliczeniowe w przyjętej metodzie obliczeniowej.

Do obliczeń modułów warstw zastosowano program ELMOD 5.1. Program ten opracowano na podstawie metod Boussinesqa i Odemaraka i wykorzystuje maksymalną czaszę ugięcia zmierzoną za pomocą urządzenia FWD. Moduły podane są dla każdej warstwy oddzielnie tj dla warstwy górnej (asfaltowej) E1, dla warstwy podbudowy E2 oraz dla podłoża gruntowego Ep. Oznaczenia modułów E1, E2, i Ep są zgodne z przyjętym modelem obliczeniowym. Szczegółowe wyniki obliczeń przedstawiono w Załączniku 5.

Obliczone moduły warstw posłużyły do wyznaczenia modułów miarodajnych dla poszczególnych sekcji. Z uwagi na dużą zmienność modułów jako wartość miarodajną przyjęto kwantyl rzędu 0,15 wartości modułów obliczonych dla każdej strony. Oznacza to, że 85% wartości modułów jest większych od modułu miarodajnego przyjętego w dalszych obliczeniach trwałości zmęczeniowej. W Tabelach 23-31 podano wartości modułów miarodajnych, obliczonych w temperaturze warstw asfaltowych w trakcie pomiaru ugięć (kolor czarny) i przeliczone do temperatury równoważnej (kolor niebieski) T=10°C wg następującego wzoru1:

E = Et (0,77 + 0,023 T)

w którym: Et - moduł w temperaturze pomiaru, T - temperatura pomiaru.

¹ Wzór niepublikowany, opracowany przez IBDiM dla potrzeb "Katalogu Wzmocnień i Remontów Nawierzchni Podatnych i Półsztywnych"

			odcinki jedr	norodne wg CU	SUM		odcinki jednorodne wg pomiaru GPR					
	Sekcja	Pikieta	aż [km]	Moduł warstwy [MPa] / Moduł warstwy w temp. równoważnej T=10 ℃		uł warstwy w Γ=10 ℃	Sekcja	Pikietaż [km]		Moduł warstwy [MPa] / Moduł warstwy w temp. równoważnej T=10 ℃		
		od	do	asfatowych	podbudowy	podłoża		od	do	asfatowych	podbudowy	podłoża
	Ар	161,600	162,825	1249	228	59	Ap ₁	161,600	161,750	2510	266	70
				1163	228	59				2337	266	70
	Вр	162,825	164,700	2937	115	66	Bp₁	161,750	162,850	1382	194	58
yw ^E				2734	115	66				1286	194	58
s pra							Cp₁	162,850	163,300	2972	315	75
pas										2767	315	75
1A,							Dp ₁	163,300	163,850	2566	140	69
										2389	140	69
							Ep₁	163,850	164,700	5154	71	58
										4798	71	58
	AL	161,600	163,050	1346	190	48	A _{L1}	161,600	162,100	1640	574	85
				1284	190	48				1565	574	85
	BL	163,050	164,700	1270	175	41	B _{L1}	162,100	162,900	1239	352	49
Ŵ				1211	175	41				1182	352	49
s le							C _{L1}	162,900	163,200	1229	220	36
, pa										1173	220	36
14							D _{L1}	163,200	164,300	1924	206	51
										1836	206	51
							E _{L1}	164,300	164,700	1167	199	30
										1114	199	30

Tabela 23 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 1A, (temperatura warstw asfaltowych w trakcie pomiaru 7-8°C)

			odcinki jedr	norodne wg CU	SUM			00	lcinki jednoro	odne wg pomiar	u GPR	
	Sekcja	Pikieta	aż [km]	Moduł warstw temp. i	/y [MPa] / <mark>Mod</mark> r <mark>ównoważnej</mark> 1	uł warstwy w Γ=10 ℃	Sekcja	Pikieta	aż [km]	Moduł warstw temp. i	/y [MPa] / <mark>Mod</mark> i r <mark>ównoważnej</mark> 1	uł warstwy w Γ=10 ℃
		od	do	asfatowych	podbudowy	podłoża		od	do	asfatowych	podbudowy	podłoża
	Ар	147+300	147+600	1952	679	77	Ap ₁	147,300	147,600	4682	145	106
				2132	679	77				5113	145	106
W M	Вр	147+600	147+850	1193	406	32	Bp ₁	147,600	147,800	1453	188	60
bra				1303	406	32				1587	188	60
2A, pas	Ср	147+850	148+200	2509	975	78	Cp ₁	147,800	148,000	2692	566	66
				2740	975	78				2940	566	66
	Dp	148+200	148+500	1230	271	20	Dp1	148,000	148,500	1135	257	97
				1343	271	20				1240	257	97
	AL	147+300	147+600	1927	530	43	A _{L1}	147,300	147,600	3290	342	81
				2104	530	43				3592	342	81
Ş	B∟	147+600	147+850	2049	672	46	B _{L1}	147,600	147,800	2178	370	64
s lev				2238	672	46				2378	370	64
2A pas	C∟	147+850	148+200	2015	565	38	C _{L1}	147,800	148,000	2855	1020	47
				2200	565	38				3118	1020	47
	DL	148+200	148+500	1200	249	20	D _{L1}	148,000	148,500	1777	721	47
				1310	249	20				1940	721	47

Tabela 24 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 2A, (temperatura warstw asfaltowych w trakcie pomiaru 14 ℃)

			odcinki jedr	norodne wg CU	SUM			00	dcinki jednoro	odne wg pomiar	u GPR	
	Sekcja	Pikieta	aż [km]	Moduł warstw temp. r	/y [MPa] / <mark>Mod</mark> r <mark>ównoważnej</mark> 1	uł warstwy w Γ=10 ℃	Sekcja	Pikieta	aż [km]	Moduł warstw temp. r	/y [MPa] / <mark>Mod</mark> i <mark>:ównoważnej</mark> 1	uł warstwy w Γ=10 ℃
		od	do	asfatowych	podbudowy	podłoża		od	do	asfatowych	podbudowy	podłoża
	Ар	133+400	133+850	8396	454	103	Ap ₁	133,400	133,850	6294	471	109
awy				8975	454	103				6728	471	109
s pr	Вр	133+850	134+100	11036	189	161	Bp ₁	133,850	134,150	11570	244	189
, pa				11797	189	161				12368	244	189
100	Ср	134+100	134+400	4115	7	53	Cp₁	134,150	134,400	7335	136	56
				4399	7	53				7841	136	56
	AL	133+400	133+850	6129	272	66	A _{L1}	133,400	133,650	9795	257	82
				6270	272	66				10021	257	82
Ś	BL	133+850	134+100	4301	67	76	B _{L1}	133,650	133,900	7243	358	64
as le				4400	67	76				7410	358	64
10C, pas	CL	134+100	134+400	3837	4	73	C _{L1}	133,900	134,050	23277	264	97
				3925	4	73				23813	264	97
							D _{L1}	134,050	134,400	7750	488	60
										7929	488	60

Tabela 25 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 10C, (temperatura warstw asfaltowych w trakcie pomiaru 11-13℃)

			odcinki jedr	norodne wg CU	SUM			00	lcinki jednoro	dne wg pomiar	u GPR	
	Sekcja	Pikieta	aż [km]	Moduł warstw temp. r	y [MPa] / <mark>Modu</mark> <mark>ównoważnej T</mark>	uł warstwy w Γ=10 ℃	Sekcja	Pikieta	aż [km]	Moduł warstw temp. r	vy [MPa] / <mark>Modu</mark> r <mark>ównoważnej T</mark>	uł warstwy w '=10 ℃
		od	do	asfatowych	podbudowy	podłoża		od	do	asfatowych	podbudowy	podłoża
s prawy	Ар	123+728	124+350	2566	1384	17	Ap ₁	123,700	124,100	2854	1591	19
pas prawy				2625	1384	17				2919	1591	19
C, pas prawy	Вр	124+350	124+900	968	241	42	Bp ₁	124,100	124,900	2465	176	48
11C, pas prawy				990	241	42				2521	176	48
	Ср	124+900	125+500	4021	1104	64	Cp ₁	124,900	125,150	7544	582	112
				4114	1104	64				7718	582	112
	Dp	125+500	126+050	1389	307	51	Dp ₁	125,150	125,325	4485	629	100
				1421	307	51				4588	629	100
	Ер	126+050	127+000	3001	548	75	Ep₁	125,325	126,100	1755	494	51
				3070	548	75				1795	494	51
							Fp₁	126,100	127,000	7702	438	79
										7880	438	79
	AL	123+728	124+350	1950	333	64	A _{L1}	123,700	124,900	2653	553	55
				2040	333	64				2775	553	55
	BL	124+350	124+900	2201	545	51	B _{L1}	124,900	125,100	3766	1011	136
Śwś				2302	545	51				3939	1011	136
as le	C∟	124+900	125+500	1880	1634	63	C _{L1}	125,100	126,150	1987	674	44
11C, pas				1966	1634	<mark>63</mark>				2079	674	44
	DL	125+500	126+050	3457	495	44	D _{L1}	126,150	127,000	8547	571	76
				3616	495	44				8940	571	76
	EL	126+050	127+000	4542	570	71						
				4751	570	71						

Tabela 26 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 11C, (temperatura warstw asfaltowych w trakcie pomiaru 11-12°C)

Tabela 27 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 4B, (temperatura warstw asfaltowych w trakcie pomiaru 6℃)

			odcinki jedr	norodne wg CU	SUM			00	lcinki jednoro	dne wg pomiar	u GPR	
	Sekcja	Pikieta	aż [km]	Moduł warstw temp. r	y [MPa] / <mark>Modu</mark> <mark>ównoważnej T</mark>	uł warstwy w Γ=10 ℃	Sekcja	Pikieta	aż [km]	Moduł warstw temp. r	y [MPa] / <mark>Modu</mark> <mark>ównoważnej T</mark>	uł warstwy w '=10 ℃
		od	do	asfatowych	podbudowy	podłoża		od	do	asfatowych	podbudowy	podłoża
	Α	624+000	625+700	11694	1045	117	A ₁	624,000	624,450	13832	784	87
				10618	1045	117				12559	784	87
	В	625+700	626+800	5419	1274	167	B ₁	624,450	624,950	11323	786	140
				4920	1274	167				10282	786	140
	С	626+800	627+550	6378	442	155	C ₁	624,950	625,950	13295	1090	126
ω				5791	442	155				1 2072	1090	126
4	D	627+550	628+000	9938	1223	152	D ₁	625,950	626,950	4203	2669	175
				9024	1223	152				3817	2669	175
							E ₁	626,950	627,300	6199	889	153
										5629	889	153
							F ₁	627,300	628,000	12348	1628	164
										11212	1628	164

Tabela 28 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 6C, (temperatura warstw asfaltowych w trakcie pomiaru 7℃)

			odcinki jedr	norodne wg CU	SUM			00	dcinki jednoro	odne wg pomiar	u GPR	
	Sekcja	Pikieta	aż [km]	Moduł warstw temp. r	/y [MPa] / <mark>Mod</mark> r <mark>ównoważnej</mark> 1	uł warstwy w Γ=10 ℃	Sekcja	Pikieta	aż [km]	Moduł warstw temp. r	vy [MPa] / <mark>Mod</mark> r <mark>ównoważnej</mark>]	uł warstwy w Γ=10 ℃
		od	do	asfatowych	podbudowy	podłoża		od	do	asfatowych	podbudowy	podłoża
	Α	624+046	624+775	3977	320	75	A ₁	624,000	625,275	1975	749	81
				3703	320	75				1839	749	81
	В	624+775	625+275	3387	143	112	B ₁	625,275	625,950	2504	646	116
с				3153	143	112				2331	646	116
9	С	625+275	626+275	981	123	113	C ₁	625,950	626,750	817	755	108
				914	123	113				761	755	108
	D	626+275	628+000	2260	1028	95	D ₁	626,750	628,000	9918	652	87
				2104	1028	95				9234	652	87

Tabela 29 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 7C, (temperatura warstw asfaltowych w trakcie pomiaru 7℃)

			odcinki jedr	norodne wg CU	SUM			00	lcinki jednoro	dne wg pomiar	u GPR	
	Sekcja	Pikieta	aż [km]	Moduł warstw temp. r	vy [MPa] / <mark>Modu</mark> r <mark>ównoważnej 1</mark>	uł warstwy w Γ=10 ℃	Sekcja	Pikieta	aż [km]	Moduł warstw temp. r	/y [MPa] / <mark>Modu</mark> r <mark>ównoważnej 1</mark>	uł warstwy w Γ=10 ℃
		od	do	asfatowych	podbudowy	podłoża		od	do	asfatowych	podbudowy	podłoża
	Ар	655+400	658+024	2972	157	56	Ap ₁	655,400	657,000	26261	598	57
				2767	157	56				24449	598	57
wy	Вр	658+024	659+600	5030	132	95	Bp ₁	657,000	658,000	1553	493	58
bra				4683	132	95				1445	493	58
pas							Cp ₁	658,000	658,900	10055	795	98
7C,										9361	795	98
							Dp ₁	658,900	659,600	8241	499	85
										7672	499	85
٧٧	AL	655+400	658+024	4086	181	60	A _{L1}	655,400	658,000	4347	463	62
ıs lew				3804	181	60				4047	463	62
i, pa	BL	658+024	659+600	5671	121	98	B _{L1}	658,000	659,600	22322	1014	95
70				5279	121	98				20782	1014	95

			odcinki jedr	norodne wg CU	SUM			od	lcinki jednoro	dne wg pomiar	u GPR	
	Sekcja	Pikieta	aż [km]	Moduł warstw temp. r	y [MPa] / <mark>Modu</mark> ównoważnej T	uł warstwy w '=10 ℃	Sekcja	Pikieta	aż [km]	Moduł warstw temp. r	vy [MPa] / <mark>Modu</mark> r <mark>ównoważnej T</mark>	lł warstwy w =10 ℃
		od	do	asfatowych	podbudowy	podłoża		od	do	asfatowych	podbudowy	podłoża
	Ар	132+000	134+500	2289	435	62	Ap ₁	132,000	133,300	1658	2554	75
				2131	435	<mark>62</mark>				1544	2554	75
s prawy	Вр	134+500	135+600	934	126	47	Bp₁	133,300	134,300	1581	411	57
				870	126	47				1472	411	57
	Ср	135+600	138+000	3180	256	59	Cp ₁	134,300	134,900	2092	230	54
SC, pas prawy				2961	256	59				1947	230	54
ΥWE							Dp ₁	134,900	135,300	1702	236	50
s pra										1585	236	50
8C, pas							Ep₁	135,300	135,800	965	640	58
										898	640	58
							Fp₁	135,800	136,900	2253	311	61
										2098	311	61
							Gp ₁	136,900	137,600	2385	218	60
										2220	218	60
							Hp₁	137,600	138,000	5275	750	45
										4911	750	45
	AL	132+000	134+550	2852	303	66	A _{L1}	132,000	133,000	2277	397	74
				2590	303	<mark>66</mark>				2068	397	74
	BL	134+550	136+125	1979	204	55	B _{L1}	133,000	134,400	1441	536	60
wy				1797	204	55				1308	536	60
is le	CL	136+125	137+800	1861	30	52	C _{L1}	134,400	135,800	1715	178	54
8C, pas				1690	30	52				1558	178	54
	DL	137+800	138+000	1018	169	42	D _{L1}	135,800	137,700	2702	145	55
				924	169	42				2453	145	55
							E _{L1}	137,700	138,000	3599	410	56
										3268	410	56

Tabela 30 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 8C, (temperatura warstw asfaltowych w trakcie pomiaru 6-7 ℃)

			odcinki jedr	norodne wg CU	SUM			00	lcinki jednoro	dne wg pomiar	u GPR	
	Sekcja	Pikieta	aż [km]	Moduł warstw temp. r	vy [MPa] / <mark>Modu</mark> r <mark>ównoważnej T</mark>	uł warstwy w Γ=10 ℃	Sekcja	Pikieta	aż [km]	Moduł warstw temp. r	vy [MPa] / <mark>Modu</mark> r <mark>ównoważnej T</mark>	uł warstwy w '=10 ℃
		od	do	asfatowych	podbudowy	podłoża		od	do	asfatowych	podbudowy	podłoża
	Ар	172+000	172+650	2695	8	83	Ap ₁	172,000	172,650	2717	1084	72
				2571	8	83				2592	1084	72
	Вр	172+650	173+100	3199	243	60	Bp ₁	172,650	173,930	1016	459	47
				3052	243	60				969	459	47
	Ср	173+100	164+275	917	25	43	Cp ₁	173,930	174,050	8562	7296	126
we				875	25	43				8168	7296	1 26
s pra	Dp	164+275	175+100	1721	330	56	Dp ₁	174,050	174,430	11703	1205	65
pas				1642	330	56				11165	1205	65
9C,							Ep ₁	174,430	174,640	6439	429	61
										6143	429	61
							Fp₁	174,640	174,740	20406	2804	77
										19467	2804	77
							Gp₁	174,740	175,000	4152	482	58
										3961	482	58
	AL	172+000	172+550	1358	304	49	A _{L1}	172,000	173,050	1422	512	58
				1233	304	49				1291	512	58
	BL	172+550	173+700	2856	71	70	B _{L1}	173,050	173,550	1625	385	66
				2593	71	70				1476	385	66
wy	C∟	173+700	165+100	1542	7	58	C _{L1}	173,550	174,170	1757	413	47
is le				1400	7	58				1596	413	47
, pa							D _{L1}	174,170	174,430	2409	241	106
9C										2187	241	106
							E _{L1}	174,430	174,760	1911	194	53
										1735	194	53
							F _{L1}	174,760	175,100	2637	302	69
										2394	302	69

Tabela 31 Moduły warstw dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 9C, (temperatura warstw asfaltowych w trakcie pomiaru 6-8°C)

W analizie stanu naprężeń i odkształceń przyjęte modele obciążano naciskiem 50 kN, rozłożonym na powierzchnię kołową o ciśnieniu kontaktowym 0,65 MPa a następnie obliczano: odkształcenia rozciągające w dolnej strefie pakietu warstw asfaltowych i odkształcenia pionowe (ściskające) w górnej części podłoża gruntowego. W Tabelach 32-40 przedstawiono wyniki analizy stanu naprężeń i odkształceń.

W obliczeniach trwałości zmęczeniowej nawierzchni posłużono się kryteriami zmęczeniowymi Instytutu Asfaltowego:

- kryterium spękań zmęczeniowych warstw asfaltowych,
- kryterium deformacji strukturalnych nawierzchni.

W obliczeniach dla każdego modelu obliczeniowego przyjęto następujące parametry:

- moduł sztywności warstwy (sprężystości),
- odkształcenia rozciągające w dolnej strefie pakietu warstw asfaltowych,
- odkształcenia pionowe (ściskające) w górnej części podłoża gruntowego,
- zawartość asfaltu (objętościowo) i zawartość wolnej przestrzeni (objętościowo) przyjęto na podstawie danych zamieszczonych w Tabeli 4.

Wyniki analizy trwałości zmęczeniowej istniejącej nawierzchni przedstawiono w Tabelach 32-40.

				Odwierty							Pomiar GPR	2		
			odcinki	jednorodne w	/g CUSUM					odcinki jedr	norodne wg p	omiaru GPR		
Odcinek	Sekcja	Pikieta	aż [km]	Odkszta warstwie,	ałcenia w microstrain	Trwałość zr w warstwie,	męczeniowa mln osi 10 t	Sekcja	Pikieta	aż [km]	Odkszta warstwie,	ałcenia w microstrain	Trwałość zr w warstw	nęczeniowa /ach, mln
		od	do	asfatowej	podłoża	asfaltowej	podłoża		od	do	asfatowej	podłoża	asfatowej	podłoża
	Ар	161,600	162,825	273	775	7,26	0,12	Ap ₁	161,600	161,750	192	476	12,75	1,06
	Вр	162,825	164,700	199	397	9,91	2,39	Bp ₁	161,750	162,850	271	614	6,83	0,34
wi														
s pra								Cp ₁	162,850	163,300	132	339	37,87	4,85
pas														
1A,								Dp ₁	163,300	163,850	158	375	23,76	3,09
								Ep ₁	163,850	164,700	167	354	10,92	4,00
	AL	161,600	163,050	278	656	6,29	0,25	A _{L1}	161,600	162,100	181	632	21,80	0,30
	BL	163,050	164,700	472	1159	1,16	0,02	B _{L1}	162,100	162,900	274	889	7,08	0,06
Ŵ														
is le								C _{L1}	162,900	163,200	452	1269	1,37	0,01
, pa														
14								D _{L1}	163,200	164,300	365	805	1,89	0,10
								EL1	164,300	164,700	508	1748	0,98	0,00

Tabela 32 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 1A,

Tabela 33 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 2A,

				Odwierty							Pomiar GPR			
			odcinki j	jednorodne w	g CUSUM					odcinki jedr	norodne wg po	omiaru GPR		
Odcinek	Sekcja	Pikieta	aż [km]	Odkszta warstwie, r	łcenia w microstrain	Trwałość zr w warstwie,	nęczeniowa mln osi 10 t	Sekcja	Pikieta	aż [km]	Odkszta warstwie, r	łcenia w nicrostrain	Trwałość zr w warstw	nęczeniowa /ach, mln
		od	do	asfatowej	podłoża	asfaltowej	podłoża		od	do	asfatowej	podłoża	asfatowej	podłoża
	Ар	147+300	147+600	79	255	137,88	17,40	Ap ₁	147,300	147,600	109	218	22,65	35,15
awy	Вр	147+600	147+850	221	835	7,11	0,09	Bp₁	147,600	147,800	378	680	1,03	0,21
s pra														
2A, pas	Ср	147+850	148+200	91	337	69,88	4,98	Cp₁	147,800	148,000	112	331	33,22	5,40
	Dp	148+200	148+500	355	1449	1,46	0,01	Dp₁	148,000	148,500	284	629	3,29	0,30
	AL	147+300	147+600	97	337	70,96	4,98	A _{L1}	147,300	147,600	184	560	5,47	0,51
Ŵ	BL	147+600	147+850	134	523	23,24	0,69	B _{L1}	147,600	147,800	174	505	9,34	0,81
s le														
2A pas l	C∟	147+850	148+200	148	558	17,01	0,52	C _{L1}	147,800	148,000	107	527	36,72	0,67
	DL	148+200	148+500	371	1488	1,29	0,01	D _{L1}	148,000	148,500	185	952	9,09	0,05

Tabela 34 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 10C,

				Odwierty							Pomiar GPR			
			odcinki j	jednorodne w	g CUSUM	_				odcinki jedr	norodne wg po	omiaru GPR	_	
Odcinek	Sekcja	Pikieta	aż [km]	Odkszta warstwie, i	łcenia w microstrain	Trwałość zr w warstwie,	nęczeniowa mln osi 10 t	Sekcja	Pikieta	aż [km]	Odkszta warstwie, r	łcenia w nicrostrain	Trwałość zr w warstw	nęczeniowa /ach, mln
		od	do	asfatowej	podłoża	asfaltowej	podłoża		od	do	asfatowej	podłoża	asfatowej	podłoża
	Ар	133+400	133+850	92	212	33,70	39,83	Ap ₁	133,400	133,850	101	262	31,70	15,41
awy														
s pr	Вр	133+850	134+100	44	81	>100	> 100	Bp ₁	133,850	134,150	45	90	>100	>100
, pa														
10C,	Ср	134+100	134+400	108	96	36,55	>100	Cp ₁	134,150	134,400	169	434	5,11	1,60
	AL	133+400	133+850	140	326	11,50	5,78	A _{L1}	133,400	133,650	89	222	34,20	32,39
ŚWŚ	BL	133+850	134+100	117	184	28,08	75,78	B _{L1}	133,650	133,900	136	343	10,96	4,60
as le														
C, pas	C∟	134+100	134+400	123	58	26,26	>100	C _{L1}	133,900	134,050	53	163	89,93	>100
100														
								D _{L1}	134,050	134,400	119	400	16,06	2,31

Tabela 35 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 11C,

				Odwierty							Pomiar GPR			
			odcinki j	ednorodne w	rg CUSUM					odcinki jedr	orodne wg po	omiaru GPR		
Odcinek	Sekcja	Pikieta	aż [km]	Odkszta warstwie, i	ałcenia w microstrain	Trwałość zr w warstwie,	nęczeniowa mln osi 10 t	Sekcja	Pikieta	aż [km]	Odkszta warstwie, r	łcenia w nicrostrain	Trwałość zr w warstw	nęczeniowa /ach, mln
		od	do	asfatowej	podłoża	asfaltowej	podłoża		od	do	asfatowej	podłoża	asfatowej	podłoża
	Ар	123+728	124+350	74	681	>100	0,21	Ap ₁	123,700	124,100	80	712	>100	0,17
	Вр	124+350	124+900	429	1322	2,54	0,01	Bp ₁	124,100	124,900	420	955	1,22	0,05
Ŷ	<u> </u>	124.000	125,500	100	450	00.65	1 20	Cn	124.000	125 150	66	174	> 100	06 50
prav	Ср	124+900	125+500	100	430	90,05	1,20	Op ₁	124,900	125,150	00	174	>100	90,59
11C, pas	Dp	125+500	126+050	321	917	4,84	0,06	Dp ₁	125,150	125,325	104	322	72,59	6,11
110,														
110	Ер	126+050	127+000	187	630	14,84	0,30	Ep ₁	125,325	126,100	228	986	12,22	0,04
								Fp1	126,100	127,000	174	532	8,41	0,64
	A	123+728	124+350	280	827	5.57	0.09	Aut	123.700	124.900	197	800	13.62	0.10
	-					0,01	0,00			,			,	0,10
~	BL	124+350	124+900	195	752	16,53	0,14	B _{L1}	124,900	125,100	79	218	>100	35,15
e lew														
11C, pas le	CL	124+900	125+500	51	459	>100	1,25	C _{L1}	125,100	125,150	173	842	26,74	0,08
	DL	125+500	126+050	182	655	14,10	0,25	D _{L1}	125,150	127,000	143	510	14,40	0,78
	F.	126±050	127+000	164	574	15 74	0.46							
	-L	1207030	1217000	104	314	13,74	0,40							

Tabela 36 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 4B,

Odcinek				Odwierty				Pomiar GPR						
			odcinki	jednorodne w	g CUSUM			odcinki jednorodne wg pomiaru GPR						
	Sekcja	Pikietaż [km]		Odkształcenia w warstwie, microstrain		Trwałość zmęczeniowa w warstwie, mln osi 10 t		Sekcja	Pikietaż [km]		Odkształcenia w warstwie, microstrain		Trwałość zmęczeniowa w warstwach, mln	
		od	do	asfatowej	podłoża	asfaltowej	podłoża		od	do	asfatowej	podłoża	asfatowej	podłoża
	Α	624+000	625+700	85	340	12,91	4,79	A ₁	624,000	624,450	73	283	18,46	10,91
	В	625+700	626+800	67	232	54,51	26,59	B ₁	624,450	624,950	70	224	25,15	31,12
	С	626+800	627+550	125	317	6,09	6,56	C ₁	624,950	625,950	83	337	12,52	4,98
B														
4	D	627+550	628+000	63	232	39,77	26,59	D ₁	625,950	626,950	42	324	>100	5,95
								E ₁	626,950	627,300	96	299	14,88	8,52
								F ₁	627,300	628,000	62	257	34,82	16,80

Tabela 37 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 6C,

	Odwierty								Pomiar GPR						
		odcinki jednorodne wg CUSUM							odcinki jednorodne wg pomiaru GPR						
Odcinek	Sekcja	Pikietaż [km]		Odkształcenia w warstwie, microstrain		Trwałość zmęczeniowa w warstwie, mln osi 10 t		Sekcja	Pikietaż [km]		Odkształcenia w warstwie, microstrain		Trwałość zmęczeniowa w warstwach, mln		
		od	do	asfatowej	podłoża	asfaltowej	podłoża		od	do	asfatowej	podłoża	asfatowej	podłoża	
	Α	624+046	624+775	273	798	1,31	0,10	A ₁	624,000	625,275	203	1077	6,33	0,03	
	В	624+775	625+275	298	591	1,13	0,40	B ₁	625,275	625,950	152	436	13,40	1,57	
с															
9	C	625+275	626+275	310	220	2,86	33,74	C ₁	625,950	626,750	111	595	98,07	0,39	
	D	626+275	628+000	124	654	28,58	0,25	D ₁	626,750	628,000	110	425	11,99	1,76	

Tabela 38 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 7C,

				Odwierty				Pomiar GPR						
			odcinki	jednorodne w	g CUSUM			odcinki jednorodne wg pomiaru GPR						
Odcinek	Sekcja	Pikietaż [km]		Odkształcenia w warstwie, microstrain		Trwałość zmęczeniowa w warstwie, mln osi 10 t		Sekcja	Pikietaż [km]		Odkształcenia w warstwie, microstrain		Trwałość zmęczeniowa w warstwach, mln	
		od	do	asfatowej	podłoża	asfaltowej	podłoża		od	do	asfatowej	podłoża	asfatowej	podłoża
	Ар	655+400	658+024	290	444	0,94	1,45	Ap ₁	655,400	657,000	128	818	2,15	0,09
pas prawy	Вр	658+024	659+600	104	145	17,49	>100	Bp ₁	657,000	658,000	249	1108	2,70	0,02
								Cp ₁	658,000	658,900	91	321	15,02	6,20
7C,														
								Dp ₁	658,900	659,600	102	352	12,23	4,10
٧٧	AL	655+400	658+024	228	383	1,58	2,81	A _{L1}	655,400	658,000	196	678	2,46	0,22
sle														
7C, pas	BL	658+024	659+600	97	134	19,86	>100	B _{L1}	658,000	659,600	69	285	18,90	10,57

Tabela 39 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 8C,

	Odwierty								Pomiar GPR						
		•	odcinki j	jednorodne w	g CUSUM	-				odcinki jedr	orodne wg po	omiaru GPR			
Odcinek	Sekcja	Pikietaż [km]		Odkszta warstwie,	ałcenia w microstrain	Trwałość zn w warstwie,	nęczeniowa mln osi 10 t	Sekcja	Pikieta	aż [km]	Odkształcenia w warstwie, microstrain		Trwałość zmęczeniowa w warstwach, mln		
		od	do	asfatowej	podłoża	asfaltowej	podłoża		od	do	asfatowej	podłoża	asfatowej	podłoża	
	Ар	132+000	134+500	227	709	1,60	0,18	Ap ₁	132,000	133,300	20	758	>100	0,13	
	Вр	134+500	135+600	517	1006	0,23	0,04	Bp ₁	133,300	134,300	273	1034	1,20	0,03	
	Ср	135+600	138+000	254	614	0,84	0,34	Cp1	134,300	134,900	337	1072	0,47	0,03	
awy								Dp ₁	134,900	135,300	438	1453	0,24	0,01	
as pr															
c, pa								Ep ₁	135,300	135,800	188	1130	6,23	0,02	
õ								Fp₁	135.800	136.900	238	723	1.39	0.16	
									,	,			.,	-,	
								Gp₁	136,900	137,600	333	1048	0,44	0,03	
								Hp₁	137,600	138,000	153	755	2,88	0,13	
	Δ.	132+000	134+550	268	729	0.79	0.16	Δ	132 000	133 000	264	940	1.00	0.05	
	~	132+000	134+330	200	720	0,75	0,10	<u>~L1</u>	132,000	133,000	204	340	1,00	0,00	
	BL	134+550	136+125	342	930	0,48	0,05	B _{L1}	133,000	134,400	238	1206	2,08	0,02	
Ŵ															
as le	CL	136+125	137+800	317	465	0,65	1,18	C _{L1}	134,400	135,800	366	1008	0,43	0,04	
č, p		407.000	400.000	007		0.50	0.40		405.000	407 700			0.50	0.00	
ω		137+800	138+000	387	800	0,56	0,10	U _{L1}	135,800	137,700	301	689	0,56	0,20	
								E _{L1}	137,700	138,000	282	1346	0,54	0,01	
									,	,	-				

Tabela 40 Trwałość zmęczeniowa nawierzchni obliczona dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych – odcinek 9C,

			Odwierty			Pomiar GPR								
Odcinek	Sekcja	Pikietaż [km]		Odkształcenia w warstwie, microstrain		Trwałość zn w warstwie,	nęczeniowa mln osi 10 t	Sekcja	Pikietaż [km]		Odkształcenia w warstwie, microstrain		Trwałość zmęczeniowa w warstwach, mln	
		od	do	asfatowej	podłoża	asfaltowej	podłoża		od	do	asfatowej	podłoża	asfatowej	podłoża
	Ар	172+000	172+650	138	69	53,89	>100	Ap ₁	172,000	172,650	108	641	>100	0,28
	Вр	172+650	173+100	242	379	7,33	2,94	Bp ₁	172,650	173,930	292	1429	10,52	0,01
	0	470.400	404 075	450		0.50	0.00	0	470.000	474.050		004	100	5.05
Ŷ	Ср	1/3+100	164+275	459	618	2,59	0,33	Cp1	173,930	174,050	11	324	>100	5,95
s prav	Dp	164+275	175+100	309	1010	5,57	0,04	Dp ₁	174,050	174,430	126	890	20,74	0,06
ba														
96								Ep₁	174,430	174,640	229	1 0 88	4,84	0,03
								Fp₁	174,640	174,740	48	331	>100	5,40
								Gp₁	174,740	175,000	234	1052	6,55	0,03
	AL	172+000	172+550	297	788	8,10	0,11	A _{L1}	172,000	173,050	212	827	23,62	0,09
	BL	172+550	173+700	177	377	23,58	3,01	B _{L1}	173,050	173,550	215	642	20,12	0,28
ewy	C∟	173+700	165+100	248	148	13,16	>100	C _{L1}	173,550	174,170	218	688	17,98	0,20
pas								D	174 170	174 430	191	340	25.34	4 26
9C, I								PL1	174,170	174,430	101	349	23,34	4,20
								E _{L1}	174,430	174,760	204	487	20,83	0,96
								FL1	174,760	175,100	179	448	24,33	1,39

9 Porównanie wyników oceny trwałości zmęczeniowej dla poszczególnych odcinków oraz analiza wpływu jakości danych o konstrukcji nawierzchni na wymiarowanie wzmocnień

Podstawową różnicą między klasyczną metodą rozpoznania konstrukcji a metodą opartą o wyniki pomiarów radarowych jest sposób podziału na sekcje jednorodne i ilość odcinków jednorodnych. Z uwagi na ograniczoną zawsze liczbę odwiertów podział na sekcje jednorodne w metodzie klasycznej oparty jest głównie na wynikach pomiarów ugięć. Metoda radarowa z oczywistych powodów pozwala na bardziej precyzyjne i szczegółowe określenie sekcji jednorodnych.

Ponieważ zarówno podział na sekcje jednorodne jak i ich długość w obu metodach jest różna, zdecydowano, że podstawową wartością porównawczą będzie średnia wyznaczona dla całego odcinka pomiarowego.

W Tabeli 41 przedstawiono porównanie średnich trwałości zmęczeniowych obliczonych dla warstw asfaltowych i podłoża gruntowego. Porównanie obliczonych trwałości przedstawiono również w formie graficznej na Rysunkach 40 i 41. Uzyskane wartości trwałości przedstawiono na tle prognozowanego ruchu obliczonego na podstawie danych z Generalnego Pomiaru Ruchu w 2000 i 2005 roku.

Odcinek	trwałość warstw osi 10	asfaltowych [mln)0 kN]	trwałość podłoża osi 10	ruch prognozowny	
	metoda klasyczna	pomiar radarowy	metoda klasyczna	pomiar radarowy	[min osci 100 kN]
1A	6,155	12,525	0,695	1,381	13,825
2A	36,369	15,101	3,585	5,388	12,883
10C	39,348	41,137	70,232	36,616	13,156
11C	36,481	44,920	0,405	13,971	16,229
4B	28,320	34,305	16,133	13,047	1,757
6C	8,470	32,448	8,623	0,938	15,811
7C	9,968	8,910	51,065	3,533	13,351
8C	0,736	9,035	0,293	0,066	13,815
9C	16,317	40,437	29,490	1,233	15,798

Tabela 41 Porównanie średnich trwałości zmęczeniowych warstw nawierzchni obliczonych dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych

Rysunek 40 Porównanie średnich trwałości zmęczeniowych warstw asfaltowych obliczonych dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych

Rysunek 41 Porównanie średnich trwałości zmęczeniowych podłoża gruntowego obliczonych dla sekcji jednorodnych wyznaczonych metodą klasyczną i na podstawie pomiarów radarowych

Z przedstawionych danych wynika, że zarówno w metodzie klasycznej jak i w metodzie radarowej na większości odcinków warstwą decydującą o trwałości konstrukcji nawierzchni jest podłoże gruntowe.

Porównując wartości obliczonych dla sekcji trwałości warstw asfaltowych i podłoża gruntowego można stwierdzić, że na większości odcinków:

- 1. trwałość warstw asfaltowych w metodzie radarowej jest większa niż w przypadku sekcji wyznaczonych na podstawie odwiertów,
- 2. trwałość podłoża gruntowego w metodzie radarowej jest mniejsza niż w przypadku sekcji wyznaczonych na podstawie odwiertów.

Powyższe stwierdzenia mogą świadczyć o tym, że o ile w obu metodach rozpoznania konstrukcji błędy popełniane w ocenie grubości warstw asfaltowych są niewielkie, o tyle w przypadku warstw podbudowy błędy te mogą być znaczne, szczególnie w przypadku metody klasycznej.

Dodatkowo przeprowadzono porównanie trwałości zmęczeniowej warstw asfaltowych i podłoża gruntowego obliczonych dla sekcji jednorodnych wyznaczonych na podstawie pomiaru radarowego dla obu pasów ruchu. Wyniki obliczeń przedstawiono na zamieszczonych poniżej rysunkach.

Przedstawione dane wskazują na dużą niejednorodność warstw asfaltowych jak i podbudowy i podłoża w przekroju poprzecznym. Różnice w obliczonej trwałości zmęczeniowej wyznaczonej dla poszczególnych pasów mogą sięgać ponad 100%. Przedstawione porównanie pokazuje jak ważne jest właściwe rozpoznanie konstrukcji w przekroju poprzecznym nawierzchni.

Rysunek 42 Porównanie średnich trwałości zmęczeniowych warstw asfaltowych obliczonych dla sekcji jednorodnych wyznaczonych na podstawie pomiarów radarowych na obu pasach ruchu

Rysunek 43 Porównanie średnich trwałości zmęczeniowych podłoża gruntowego obliczonych dla sekcji jednorodnych wyznaczonych na podstawie pomiarów radarowych na obu pasach ruchu

Ponieważ jednym z celów niniejszej pracy była ocena wpływu jakości danych o konstrukcji nawierzchni na wymiarowanie wzmocnień dla każdego odcinka zaprojektowano wzmocnienie nawierzchni metodą mechanistyczną w oparciu o dane konstrukcji z odwiertów i z pomiarów radarowych. Szczegółowe wyniki obliczeń zamieszczono w Załączniku 6. Poniżej przedstawiono średnie ważone grubości nakładek wzmacniających wykonanych z betonu asfaltowego (Tabela 42 i Rysunek 44).

	Średnia grubość	różnica między GPR		
Odcinek	podział wg metody klasycznej	podział na podstawie pomiarów GPR	a metodą klasyczną [cm]	
1A	7,0	6,9	-0,1	
2A	3,2	2,8	-0,4	
10C	0,2	0,7	0,5	
11C	7,9	7,6	-0,3	
4B	0,5	1,1	0,6	
6C	10,6	11,0	0,4	
7C	8,3	13,1	4,8	
8C	12,4	13,9	1,5	
9C	3,3	6,8	3,5	

Tabela 42 Porównanie średnich grubości nakładek wzmacniających

Rysunek 44 Porównanie średnich grubości nakładek wzmacniających

Powyższe dane wskazują na niewielkie różnice w projektowanych grubościach warstw nakładek wzmacniających. Większe różnice tj większe grubości nakładek w przypadku metody radarowej stwierdzono jedynie na odcinkach 7C, 8C i 9C. To, że na większości odcinków różnice w grubościach nakładek są niewielkie, nie oznacza, że obliczone nakładki są takie same. Wyjaśnienie tego problemu przedstawiono na zamieszczonych poniżej rysunkach. Linią czerwoną zaznaczono grubość nakładki obliczonej na podstawie danych z podziału na sekcje według metody klasycznej, natomiast linią niebieską grubości nakładek obliczonych na podstawie pomiarów radarowych.

Na odcinku 1A (Rysunek 45) grubości nakładek w obu przypadkach są praktycznie takie same. Różnice widoczne są na trzech sekcjach wydzielonych na podstawie pomiaru GPR, gdzie obliczona grubość nakładki jat mniejsza niż na odpowiadającym odcinku wg metody klasycznej. Zaprezentowany przykład pokazuje skuteczność zastosowania pomiaru radarowego w minimalizowaniu zakresu remontu.

Na Rysunku 46 przedstawiono przykład odcinka (8C, pas prawy) gdzie grubości nakładek obliczonych na podstawie pomiarów radarowych są większe od grubości nakładek według metody klasycznej. Różnice widoczne są praktycznie na wszystkich sekcjach.

Odcinek 11C (Rysunek 47) jest przykładem nawierzchni gdzie grubości nakładek obliczonych na podstawie pomiarów radarowych są mniejsze od grubości nakładek według metody klasycznej. Największe różnice można zaobserwować w środkowej części odcinka, gdzie wg pomiarów radarowych nie ma konieczności wykonania wzmocnienia nawierzchni.

Zaprezentowane odcinki 8C i 11C pokazują jak istotna jest odpowiednia częstotliwość danych o konstrukcji, szczególnie w przypadku nawierzchni o dużej zmienności konstrukcji w profilu podłużnym. W obu przypadkach ocena metodą klasyczną nie pozwoliła uzyskać wystarczających danych do prawidłowego określenia grubości nakładki wzmacniającej.

Rysunek 45 Porównanie grubości nakładek wzmacniających wg metody klasycznej i pomiarów radarowych – odcinek 1A, pas prawy

Rysunek 46 Porównanie grubości nakładek wzmacniających wg metody klasycznej i pomiarów radarowych – odcinek 8C, pas prawy

Rysunek 47 Porównanie grubości nakładek wzmacniających wg metody klasycznej i pomiarów radarowych – odcinek 11C, pas prawy
Autorzy niniejszego opracowania uznali, że pomocnym wskaźnikiem porównawczym w ocenie wpływu jakości danych o konstrukcji nawierzchni na wymiarowanie wzmocnień będzie koszt wykonania nakładki wzmacniającej. W tym celu dla każdego odcinka obliczono koszt wykonania nakładki. Przyjęto koszty wykonania poszczególnych warstw jak dla drogi jednojezdniowej klasy GP o kategorii ruchu KR5:

- warstwa ścieralna grubości 5 cm 0,470 mln zł/km
- warstwa wiążąca o grubości 8 cm 0,709 mln zł/km
- warstwa podbudowy o grubości 14 cm 1,098 mln zł/km
- Wyniki obliczeń przedstawiono w Tabeli 43 oraz na Rysunku 48.

Odcinek	Koszt wykonania nakładki [mln zł]		różnica między GPR
	podział wg metody klasycznej	podział na podstawie pomiarów GPR	a metodą klasyczną [mln zł]
1A	3,079	3,047	-0,03
2A	1,095	1,006	-0,09
10C	0,063	0,215	0,15
11C	3,862	3,682	-0,18
4B	0,141	0,310	0,17
6C	1,932	1,900	-0,03
7C	2,280	3,536	1,26
8C	7,237	8,062	0,83
9C	1,906	3,832	1,93

Tabela 43 Porównanie średnich grubości nakładek wzmacniających

Analizując przedstawione dane można stwierdzić, że różnice w kosztach wykonania remontu na odcinkach od 1A do 6C są niewielkie, natomiast nieco większe na odcinkach 7C, 8C i 9C. Porównując otrzymane wyniki obliczeń z danymi zaprezentowanymi na Rysunkach 20 i 21 (punkt 7) można stwierdzić, że na odcinkach na których nie doszło do znacznych zmian w łącznej grubości warstw konstrukcyjnych nawierzchni różnice w projektowanych nakładkach wzmacniających, a więc i w kosztach ich wykonania, są niewielkie.

Rysunek 48 Porównanie średnich grubości nakładek wzmacniających

10 Wnioski

Analizując zmiany w ocenie konstrukcji metodą klasyczną i przy pomocy techniki radarowej badane odcinki dróg można podzielić na trzy grupy:

- w pierwszej grupie znajdują się odcinki 1A, 2A i 10C, w których stwierdzono największe różnice w grubościach warstw określonych na podstawie oceny konstrukcji metodą klasyczną i pomiarów radarowych. Należy zaznaczyć, że na odcinkach tych łączna grubość warstw asfaltowych i podbudowy zmieniła się w nieznaczny sposób.
- W drugiej grupie znalazły się odcinki 11C, 4B i 6C. Na odcinkach tych wyniki rozpoznania metodą radarową potwierdziły dane uzyskane przy pomocy metody klasycznej.
- Grupa trzecia to odcinki 7C, 8C i 9C. Na odcinkach tych różnice w ocenie grubości metodą klasyczną i przy pomocy techniki radarowej są porównywalne z tymi w grupie pierwszej, z tym, że na tych odcinkach zmniejszyła się łączna grubość warstw konstrukcyjnych nawierzchni.

Porównując wyniki obliczeń nakładek wzmacniających i kosztów wykonania remontu z zaproponowanym podziałem odcinków na grupy, można stwierdzić, że

- różnice w kosztach wykonania remontu na odcinkach od 1A do 6C, a więc odcinków z grupy pierwszej i drugiej są niewielkie, co oznacza, że na odcinkach na których nie doszło do znacznych zmian w łącznej grubości warstw konstrukcyjnych nawierzchni, różnice w projektowanych nakładkach wzmacniających, a więc i w kosztach ich wykonania są niewielkie
- różnice w kosztach wykonania remontu na odcinkach 7C, 8C i 9C, tj odcinków z grupy trzeciej są znaczne, co oznacza, że na odcinkach na których doszło do znacznych

zmian w łącznej grubości warstw konstrukcyjnych nawierzchni różnice w projektowanych nakładkach wzmacniających i w kosztach ich wykonania są znaczące.

Powyższe wnioski wskazują na to, że najbardziej niekorzystną sytuacją będzie taka, w której przyjęty zostanie układ warstw o łącznej grubości większej niż to jest w rzeczywistości. W takiej sytuacji zostaną zaprojektowane zbyt małe wzmocnienia a nawierzchnia nie spełni wymaganego warunku nośności w projektowanym okresie obliczeniowym.

O jakości rozpoznania konstrukcji nawierzchni decyduje zmienność konstrukcji. Im większa zmienność konstrukcji tym mniejsza dokładność rozpoznania układu warstw poprzez odwierty. W przypadku metody radarowej dokładność ta jest praktycznie tak samo wysoka na odcinkach o małej jak i dużej zmienności układu warstw.

Podstawową różnicą w jakości uzyskanych danych metodą klasyczną i przy pomocy techniki radarowej jest dokładność i precyzyjne określenie odcinków jednorodnych. Z uwagi na ograniczoną zawsze liczbę odwiertów podział na sekcje jednorodne w metodzie klasycznej oparty jest głównie na wynikach pomiarów ugięć, natomiast metoda radarowa z oczywistych powodów pozwala na zwiększenie ilości sekcji jednorodnych, co ma zasadnicze znaczenie w przypadku konstrukcji o dużej zmienności warstw.

Przeprowadzone w ramach niniejszej pracy analizy pozwalają stwierdzić, że o ile w obu metodach rozpoznania konstrukcji błędy popełniane w ocenie grubości warstw asfaltowych są niewielkie, o tyle w przypadku warstw podbudowy błędy te mogą być znaczne, szczególnie w przypadku metody klasycznej.

Na podstawie przeprowadzonych badań i analiz można stwierdzić, że zarówno klasyczna metoda rozpoznania konstrukcji jak i metoda radarowa posiadają ograniczenia, z których najważniejsze to:

- zakłócenia sygnału radarowego związane ze zwiększona wilgotnością warstw konstrukcyjnych nawierzchni,
- skorelowanie miejsca wykonywania odwiertów (w przekroju poprzecznym i podłużnym) z badaniami ugięć, a przypadku odwiertów kalibracyjnych z pomiarami radarowymi,
- problemy z właściwą oceną grubości warstw podbudowy w miejscu wykonanego odwiertu w metodzie klasycznej.

Dzięki wydajności metody radarowej możliwe jest właściwe rozpoznanie konstrukcji nawierzchni w przekroju poprzecznym. Ma to duże znaczenie gdyż, jak to wykazano, różnice w układzie warstw w przekroju poprzecznym mogą być znaczne, a obliczona w takich przypadkach trwałość zmęczeniowa może się zmniejszyć lub zwiększyć nawet dwukrotnie.

W niniejszej pracy wykazano skuteczność zastosowania pomiaru radarowego w ocenie trwałości nawierzchni i jednocześnie wskazano jak istotna jest odpowiednia częstotliwość

danych o konstrukcji, szczególnie w przypadku nawierzchni o dużej zmienności konstrukcji w profilu podłużnym.

11 Bibliografia

[SYB 01] Sybilski D., *Katalog Wzmocnień Nawierzchni Podatnych i Półsztywnych*, Instytut Badawczy Dróg I Mostów, Warszawa, 2001.

[LIV 92] LIVNEH M., SIDDIQUI M.H., Assessment of radar technology for determining the thickness of pavement layers, 7th International Conference on Asphalt Pavements, Nottingham 1992

[BLA 92] BLACK K., KOPAC P., *The application of Ground-Penetrating Radar in highway engineering*, Public Roads, 1992.

[MIL 95] MILLIGAN R.W., *High speed pavement investigation - a standard for the 90s*, Impulse Geophysics, 1995

[BEN 04] BENEDETTO A., BENEDETTO F., DE BLASIIS M.R., GIUNTA G. *Reliability of radar inspection for detection of pavement damage*, Road Materials and Pavement Design, Volume 5 - No. 1/2004

[HIG 02] *Design Manual for Roads and Bridges - Ground radar*, Volume 7, HIGHWAYS AGENCY, 2002

[BEU 98] Deflection profile-not a pitfall anymore, CROW, 1998

Korzystano również z informacji na temat systemów radarowych zamieszczonych na stronach <u>http://www.geophysical.com</u>, <u>http://www.groundprobe.com</u>,

http://ramac.malags.com