

POLITECHNIKA GDAŃSKA

WYDZIAŁ INŻYNIERII LĄDOWEJ I ŚRODOWISKA

Katedra Inżynierii Drogowej

ul. G. Narutowicza 11/12 Tel: 80-233 Gdańsk Fax:

58 347 13 47 58 347 10 97

BADANIE WPŁYWU ZASTOSOWANIA WARSTW BETONU ASFALTOWEGO O WYSOKIM MODULE SZTYWNOŚCI (AC-WMS) W KONSTRUKCJACH NAWIERZCHNI NA SPĘKANIA NIESKOTEMPERATUROWE I NA ZMNIEJSZENIE POWSTAWANIA DEFORMACJI TRWAŁYCH

RAPORT Z TRZECIEGO ETAPU

Opracowano na zlecenie:

Generalna Dyrekcja Dróg Krajowych i Autostrad ul. Żelazna 59 00–848 WARSZAWA

Opracowali:

prof. dr hab. inż. Józef Judycki – autor kierujący

dr inż. Marek Pszczoła

mgr inż. Mariusz Jaczewski

mgr inż. Łukasz Mejłun

mgr inż. Dawid Ryś

Kierownik Katedry Inżynierii Drogowej – prof. dr hab. inż. Józef Judycki

Gdańsk, listopad 2013

1. \	WSTE	P	5
1	.1.	Podstawa opracowania	5
1	.2.	CEL PRACY	5
1	.3.	ZAKRES PRACY	5
1	.3.1.	ZAKRES CAŁEJ KILKUETAPOWEJ PRACY BADAWCZEJ	5
1	.3.2.	ZAKRES III ETAPU PRACY BADAWCZEJ	6
2. 8	BADA	NIA CECH REOLOGICZNYCH BETONÓW ASFALTOWYCH O WYSO	KIM
ſ	MODI	JLE SZTYWNOŚCI	8
2	2.1.	WSTEP	8
2	2.2.	METODYKA BADANIA	8
2	2.2.1.	PRZYGOTOWANIE PRÓBEK	8
2	.2.1.1.	Przygotowanie próbek do badania TSRST	8
2	.2.2.	PROCEDURA STARZENIA KRÓTKOTERMINOWEGO	8
2	.2.3.	PROCEDURA PRZEPROWADZONYCH BADAŃ	9
2	.2.3.1.	PROCEDURA BADANIA MODUŁU SZTYWNOŚCI W SCHEMACIE POŚREDNIEGO ROZCIĄGANIA	
	(ITS	M; IT-CY)	9
2	.2.3.2.	Procedura badania TSRST	11
2	2.3.	WYNIKI BADAŃ	12
2	.3.1.	WYNIKI BADAŃ ZGINANIA POD STAŁYM OBCIĄŻENIEM (PEŁZANIA)	12
2	.3.2.	WYNIKI BADAŃ ZGINANIA BELEK ZE STAŁĄ PRĘDKOŚCIĄ WZROSTU UGIĘĆ	15
2	.3.2.1.	ANALIZA WYNIKÓW BADANIA ZGINANIA BELEK ZE STAŁĄ PRĘDKOŚCIĄ WZROSTU UGIĘĆ	18
2	.3.3.	WYNIKI BADAŃ MODUŁU DYNAMICZNEGO	18
2	.3.4.	WYNIKI BADAŃ MODUŁU SZTYWNOŚCI W METODZIE POŚREDNIEGO ROZCIĄGANIA	21
2	2.4. PRÓ	KRZYWE WIODĄCE MIESZANEK MINERALNO-ASFALTOWYCH WYZNACZONE NA PODSTAWIE PEŁZ BEK BELKOWYCH PRZY ZGINANIU	<u>2</u> ANIA 23
2	2.5.	BIBLIOGRAFIA DO ROZDZIAŁU 2	29
3	ΔΝΔΙ	IZA KONSTRUKCJI NAWIERZCHNI W WARUNKACH	
U. /		VYŻSZONYCH TEMPERATUR Z WYKORZYSTANIEM PROGRAMU	
۱	VERO		31
3	-	Wester	21
3	י.י. ייז		51 21
3	.∠. :3		51 20
3	.Э. г Л		
3	2.4. 2.1.1		
3	.		
3	.4.2. . / 3		40
3	.4.5		40 11
3	.5.1		41 //1
3	.5.2		41
2 2	53	Ροβάψηδη βρτεμιές του	+5 //5
ວ 2			43 лг
2 2	 		43 лс
2 2	.0.1.		 лг
2 0		Ροκόψηδη βαζεμική ποιούνει πανλεί η συμείζοι παι σελκοινίτησε	40 ⊿7
3	64		
J			+/

SPIS TREŚCI

4	. BADA TERM	NIA I ANALIZY OBLICZENIOWE ROZCIĄGAJĄCYCH NAPRĘŻEŃ IICZNYCH CZ.2
	4 1	WSTEP 49
	4.2.	WSPÓŁCZYNNIK LINIOWEJ ROZSZERZALNOŚCI TERMICZNEJ
	4.3.	WYNIK BADAŃ TSRST
	4.4.	OBLICZENIA NAPRĘŻEŃ TERMICZNYCH
	4.4.1.	METODYKA HILLSA I BRIANA
	4.4.2.	METODYKA OPARTA O TEORIĘ LINIOWEJ LEPKOSPRĘŻYSTOŚCI68
	4.4.2.1.	KONWERSJA FUNKCJI PEŁZANIA NA FUNKCJĘ RELAKSACJI
	4.4.2.2.	MODEL PREDYKCJI NAPRĘŻEŃ TERMICZNYCH
	4.4.2.3.	WYNIKI OBLICZEŃ NAPRĘŻEŃ TERMICZNYCH73
	4.5.	PORÓWNANIE WYNIKÓW OBLICZEŃ NAPRĘŻEŃ TERMICZNYCH Z METODY HILLSA I BRIENA ORAZ
	MET	ODY OPARTEJ O TEORIĘ LINIOWEJ LEPKOSPRĘŻYSTOŚCI PRZY PRĘDKOŚCI OZIĘBIANIA V _T = 10° C/H
	4.6.	PORÓWNANIE WYNIKÓW BADAŃ NAPRĘŻEŃ TERMICZNYCH Z TESTU TSRST Z WYNIKAMI OBLICZEŃ
	WED	LUG METODY HILLSA I BRIENA
	4.7.	BIBLIOGRAFIA DO ROZDZIAŁU 485
5	. ANAL	IZA POMIARÓW TEMPERATURY W NAWIERZCHNIACH
	BITUN	AICZNYCH
	5 1	
	5.1. 5.2	DANE POMIAROWE
	5.2.	
	5.5. 5.4	
	5.4.	GRADIENT TEMPERATORT GORNEJ POWIERZCHNI NAWIERZCHNI
6	. TERE	NOWA OCENA ODCINKÓW DRÓG Z AC WMS ORAZ ODCINKÓW
	PORĆ	WNAWCZYCH BEZ AC WMS100
	6.1.	WSTĘP
	6.2.	INFORMACJE O ODCINKACH WYTYPOWANYCH DO OCENY TERENOWEJ100
	6.3.	OCENA SPĘKAŃ POPRZECZNYCH
	6.4.	OCENA DEFORMACJI TRWAŁYCH
	6.5.	WNIOSKI

1. Wstęp

1.1. Podstawa opracowania

Opracowanie niniejsze wykonano na zlecenie Generalnej Dyrekcji Dróg Krajowych i Autostrad w Warszawie (GDDKiA w Warszawie) w ramach umowy nr 3096/2011 z dnia 18.11.2011 r., wg harmonogramu dla etapu III.

1.2. Cel pracy

Beton asfaltowy o wysokim module sztywności jest coraz częściej stosowany w Polsce. Powstał w latach 80 XX wieku we Francji, gdzie klimat jest bardziej łagodny niż w Polsce. Stosowany jest też w m.in. w Wielkiej Brytanii, kraju o bardziej umiarkowanym klimacie niż w Polsce. Beton asfaltowy o wysokim module sztywności nazywany jest we Francji w skrócie AC-EME (od francuskiej nazwy "Enrobé a Module Éleve), a w Polsce w skrócie AC-WMS.

Intensywne prace badawcze nad przystosowaniem mieszanek o wysokim module sztywności do warunków lokalnych były prowadzone także w Belgii oraz Danii. Specyfika klimatyczna tych krajów eliminuje problem występowania spękań niskotemperaturowych. Duży nacisk kładzie natomiast na odporność na deformacje trwałe.

Lokalizacja Polski na terenie środkowej Europy warunkuje większy wpływ klimatu kontynentalnego, co uzasadnia obawy z jednej strony o możliwość powstawania spękań niskotemperaturowych w okresie zimowym w nawierzchniach z zastosowaniem betonu asfaltowego o wysokim module sztywności. Z drugiej strony, ze względu na dość wysokie temperatury w okresie letnim, uzasadnione jest zbadanie wpływu tych mieszanek na zmniejszenie powstawania deformacji trwałych.

1.3. Zakres pracy

1.3.1. Zakres całej kilkuetapowej pracy badawczej

Praca została podzielona na cztery etapy, a w zakres każdego etapu wchodzą: Etap I (Zakończony w 2011 roku)

1. Prace wstępne. Przegląd literatury dotyczącej zagadnienia.

Etap II (Zakończony w 2012 roku)

- Badania cech reologicznych betonu asfaltowego o wysokim module sztywności w warunkach niskich temperatur zimowych. Wyznaczenie parametrów modelu Burgersa. Ocena wpływu rodzaju asfaltu (asfalt zwykły, modyfikowany oraz wielorodzajowy) na uzyskane parametry reologiczne.
- Badania cech reologicznych betonu asfaltowego o wysokim module sztywności i porównawczo o normalnym module sztywności w warunkach wyższych temperatur przy wykorzystaniu metody pełzania oraz metody dynamicznej. Opracowanie metodyki badań. Wyznaczenie parametrów modelu Burgersa, cz. 1

- 4. Analiza rozciągających naprężeń termicznych powstających w warunkach zimowych w konstrukcji nawierzchni, cz. 1.
- 5. Analiza wpływu położenia warstwy o wysokim module sztywności w konstrukcji nawierzchni. Ocena wpływu grubości warstw zwykłych mieszanek mineralno-asfaltowych zlokalizowanych powyżej warstwy o wysokim module sztywności.
- 6. Analiza konstrukcji nawierzchni w warunkach wyższych temperatur. Zastosowanie programu opartego o teorię lepko-sprężystości VEROAD, cz. 1
- 7. Ocena stanu technicznego odcinków dróg, w których zastosowano beton asfaltowy o wysokim module sztywności. Zebranie informacji o odcinkach, wstępne badania terenowe i laboratoryjne, cz. 1

<u>Etap III (Zrealizowany w 2013 roku) – Niniejszy raport jest sprawozdaniem z realizacji etapu</u>

- 8. Badania cech reologicznych betonu asfaltowego o wysokim module sztywności i porównawczo o normalnym module sztywności w warunkach wyższych temperatur przy wykorzystaniu metody pełzania oraz metody dynamicznej. Wyznaczenie parametrów modelu Burgersa, cz. 2
- 9. Analiza konstrukcji nawierzchni w warunkach wyższych temperatur. Zastosowanie programu opartego o teorię lepko-sprężystości VEROAD, cz. 2
- 10. Analiza rozciągających naprężeń termicznych powstających w warunkach zimowych w konstrukcji nawierzchni, cz. 2
- 11. Ocena stanu technicznego odcinków dróg, w których zastosowano beton asfaltowy o wysokim module sztywności oraz odcinków porównawczych bez zastosowanego betonu asfaltowego o wysokim module sztywności, cz. 2.
- 12. Analiza temperatury nawierzchni na podstawie danych ze stacji meteorologicznych.

Etap IV (przewidziany do realizacji w 2014 roku)

- 13. Analiza wpływu ruchu drogowego, klimatu, zastosowanej metody projektowania oraz miejsca wbudowania betonu asfaltowego o wysokim module sztywności na stan techniczny danej drogi.
- 14. Ocena stanu technicznego istniejących odcinków dróg, w których zastosowano beton asfaltowy o wysokim module sztywności i odcinków porównawczych. Podsumowanie oceny, cz. 3.
- 15. Przygotowanie raportu końcowego, podsumowanie przeprowadzonych badań i analiz.

1.3.2. Zakres III etapu pracy badawczej

Niniejsze opracowanie składa się z pięciu rozdziałów. Zawiera ono sprawozdanie z prac badawczych wykonanych w 2013 roku.

Rozdział 1 to wstęp.

Rozdział 2 zatytułowany "Badania cech reologicznych betonów asfaltowych o wysokim module sztywności" zawiera:

• Wyniki badań mieszanek mineralno-asfaltowych z uwzględnieniem starzenia krótkoterminowego.

- Opis i analizę parametrów badanych mieszanek w schemacie obciążenia statycznego oraz dynamicznego w oparciu o krzywe wiodące.
- Wyznaczenie cech reologicznych badanych mieszanek mineralno-asfaltowych.
- Uzupełnienie parametrów modeli reologicznych wykorzystywanych do dalszych analiz.

Rozdział 3 zatytułowany "Analiza konstrukcji nawierzchni w warunkach podwyższonych temperatur z wykorzystaniem programu VEROAD cz.2" zawiera:

- Przyjęcie konstrukcji nawierzchni do analiz w 4 wariantach w zależności od materiału, z którego wykonano warstwę wiążącą i górną warstwę podbudowy zasadniczej (tradycyjny beton asfaltowy lub beton asfaltowy o wysokim module sztywności).
- Przyjęcie rozkładu temperatur w warstwach asfaltowych, określenie temperatur reprezentatywnych warstw asfaltowych.
- Przyjęcie parametrów materiałowych warstw konstrukcyjnych nawierzchni i podłoża gruntowego.
- Określenie obciążenia analizowanej konstrukcji nawierzchni.
- Przedstawienie wyników modelowania pracy konstrukcji nawierzchni w programie komputerowym VEROAD w warunkach podwyższonych temperatur (przy temp. powierzchni jezdni wynoszącej 40°C).
- Analiza wyników symulacji pod kątem przemieszczeń pionowych trwałych i całkowitych powierzchni jezdni w oparciu o teorię lepkosprężystości i modelowanie warstw asfaltowych przy użyciu liniowego modelu lepkosprężystości Burgersa.
- Wnioski z przeprowadzonych obliczeń i analiz.

Rozdział 4 zatytułowany "Analiza rozciągających naprężeń termicznych cz.2" zawiera rozwinięcie obliczeń naprężeń termicznych rozpoczętych w roku 2012. W ramach prac zakończonych w 2013 roku wykonano:

- Wyznaczenie współczynników liniowej rozszerzalności termicznej dla każdej z badanych mieszanek na podstawie studiów literatury oraz składu badanych mieszanek.
- Analizę warunków zimowych występujących w Polsce na podstawie stacji meteorologicznych zlokalizowanych równomiernie na obszarze całego kraju. W ramach analizy warunków zimowych wyznaczono rzeczywisty rozkład gradientu temperatury w ciągu doby, rozkład temperatury na grubości nawierzchni oraz ilość kolejnych dni z temperaturami poniżej -10°C, -15°C i -20°C.
- Obliczenie naprężeń termicznych powstałych w warstwach wykonanych z badanych mieszanek mineralno-asfaltowych w oparciu o 2 modele powstawania spękań: Hillsa i Briana oraz AASHTO PP42 (metoda Monismitha). W obliczeniach uwzględniono zróżnicowane współczynniki liniowej rozszerzalności termicznej.
- Porównanie wyników badań TSRST z wynikami obliczeń naprężeń termicznych.

Rozdział 5 "Ocena stanu technicznego odcinków dróg na których zastosowano beton asfaltowy o wysokim module sztywności" składa się z dwóch części: oceny stanu technicznego odcinków dróg na których zastosowano zwykły beton asfaltowy oraz beton asfaltowy o wysokim module sztywności wykonanej w roku 2013.

2. Badania cech reologicznych betonów asfaltowych o wysokim module sztywności

2.1. Wstęp

W roku 2013 zakończono badania laboratoryjne wytypowanych betonów asfaltowych zarówno w niskich jak i wysokich temperaturach. Wykonano badania próbek poddanych starzeniu krótkoterminowemu. Dodatkowo wykonano badania pod obciążeniem dynamicznym dla mieszanki SMA. Na podstawie wyników badań wykonanych dla obciążenia dynamicznego oraz statycznego wyznaczono krzywe wiodące dla poszczególnych mieszanek.

Dodatkowo w ramach analizy niskotemperaturowej wykonano badania TSRST.

2.2. Metodyka badania

2.2.1. Przygotowanie próbek

Sposób przygotowania próbek do poszczególnych badań (z wyłączeniem badania TSRST) został przedstawiony w raporcie z II etapu prac. W obecnym etapie przedstawiono wyłącznie różnice w procedurze przygotowania samej mieszanki mineralno-asfaltowej.

2.2.1.1. Przygotowanie próbek do badania TSRST

Próbki belkowe o wymiarach 50×50×160 mm oraz 60×60×160 przygotowano do badania TSRST. Próbki belkowe wycięto przy pomocy piły tarczowej z płyt o wymiarach 300×300×50 mm lub 300×300×60 zagęszczonych w półwalcowej zagęszczarce hydraulicznej. Szerokość oraz wysokość próbki belkowej były dobierane w zależności od maksymalnego ziarna występującego w mieszance mineralno-asfaltowej w oparciu o normę PN-EN 12697-46 [1]. W przypadku mieszanek o wymiarze największego ziarna od 11,2 – 22,4 mm przekrój poprzeczny próbki miał wymiary 50×50 mm, w przypadku mieszanek mineralno-asfaltowych o wymiarach największego ziarna powyżej 22,4 mm przekrój poprzeczny próbki miał wymiary 60×60 mm. Przed badaniem próbka powinna zostać umieszczona w urządzeniu badawczym oraz poddana kondycjonowaniu w temperaturze początkowej badania wynoszącej 20°C w taki sposób by nie występowały w niej naprężenia związane z działaniem temperatury.

2.2.2. Procedura starzenia krótkoterminowego

Zabiegiem symulującym warunki starzenia technologicznego jest starzenie krótkoterminowe mieszanki mineralno-asfaltowej w suszarce wykonywane przed uformowaniem próbek laboratoryjnych. Starzenie krótkoterminowe wykonano w oparciu o wytyczne amerykańskie [2], [3], ze względu na brak polskiej procedury.

Mieszankę mineralno-asfaltową umieszcza się w blaszanej formie i rozprowadza na równą grubość 25mm. Następnie kondycjonuje się mieszankę mineralno-asfaltową

umieszczając ją w suszarce z wymuszonym obiegiem powietrza, w temperaturze $135\pm3^{\circ}$ C na okres 4 godzin ± 5 minut. By zapewnić jednorodność kondycjonowania, mieszanka powinna być mieszana co 60 ± 5 minut. Następnie z mieszanki formowane są próbki o żądanym kształcie. Przed badaniem próbki poddawane były kondycjonowaniu w komorze termicznej w temperaturze badania przez okres nie krótszy niż 12 godzin oraz nie dłuższy niż 24 godziny.

2.2.3. Procedura przeprowadzonych badań

W roku 2013 zostały wykonane następujące badania cech reologicznych mieszanek mineralno-asfaltowych:

- badanie zginania pod stałym obciążeniem próbek belkowych,
- badanie zginania ze stałą prędkością przesuwu tłoka próbek belkowych,
- badanie modułu dynamicznego próbek walcowych dla mieszanki SMA,
- badanie modułu sztywności w schemacie pośredniego rozciągania próbek walcowych w niskich temperaturach,
- badanie TSRST (wykonane w laboratorium zewnętrznym).

Procedura badania TSRST została przedstawiona poniżej. Procedury pozostałych badań zostały przedstawione w raporcie z II etapu badań i nie będą w tym etapie powtórzone.

2.2.3.1. Procedura badania modułu sztywności w schemacie pośredniego rozciągania (ITSM; IT-CY)

Badanie modułu sztywności wykonano w urządzeniu NAT w schemacie IT-CY zgodnie z załącznikiem C normy PN-EN 12397-26 [4]. Badanie modułu sztywności zostało wykonane w schemacie pośredniego rozciągania z siłą pionową przyłożoną wzdłuż pobocznicy próbki walcowej. Schemat zamocowania próbki przed badaniem przedstawionego na rysunku 2.1.

Rysunek 2.1. Schemat zamocowania próbki przed badaniem modułu w schemacie IT-CY

Obciążenie przykładane jest do próbki w sposób impulsowy. Czas przyrostu obciążenia wynosi 120±4 ms, a czas trwania jednego cyklu 3 s. Wielkość impulsu jest wyznaczana przez program na podstawie 10 cykli kondycjonujących przeprowadzonych dla poziomej deformacji próbki. Badanie zostało przeprowadzone w teście kontrolowanego odkształcenia przy odkształceniu poziomym 2 μ m dla temperatur niższych od 0°C.

Badanie wykonuje się w dwóch prostopadłych płaszczyznach, poddając próbkę 5 impulsom obciążenia. Na podstawie pomiarów 5 impulsów siły wyznacza się moduł sztywności próbki według wzoru:

$$S_m = \frac{F \times (\upsilon + 0.27)}{(z \times h)} \tag{2.1}$$

gdzie:

- S_m moduł sztywności, MPa,
- F maksymalna wartość siły przyłożonej pionowo, N,
- v współczynnik Poissona,
- z amplituda poziomej deformacji uzyskana podczas cyklu obciążenia, mm,
- h średnia grubość próbki, mm.

Wynikiem badania jest średnia wartość modułu sztywności zmierzonego w dwóch prostopadłych płaszczyznach.

Wartość współczynnika Poissona została dobrana na podstawie literatury [5] i przyjęta w temperaturach od -40°C do -20°C jako v = 0,15.

2.2.3.2. Procedura badania TSRST

Badanie TSRST (ang.: "Thermal Stress Restrained Specimen Test") wykonano w Karlsruhe Institute of Technology (KIT) na zlecenie Politechniki Gdańskiej w oparciu o normę europejską PN-EN 12697-46 [1].

Próbkę po umieszczeniu w komorze termicznej kondycjonuje się w temperaturze 20°C. Po upływie okresu kondycjonowania rozpoczyna się właściwe badanie poprzez obniżanie temperatury z prędkością 10°C/h. W czasie chłodzenia próbka ulega skurczowi termicznemu, który mierzony jest czujnikami przemieszczeń. W każdym przypadku, gdy skrócenie próbki zwiększa się powyżej 0,0025 mm układ sterujący wysyła informację do siłownika, który kompensuje odkształcenie próbki utrzymując jej długość na stałym poziomie. Pojawiają się naprężenia, które wzrastają w próbce do momentu przekroczenia wytrzymałości materiału, gdy następuje pęknięcie próbki. Podczas rejestrowana jest temperatura, badania siła rozciagajaca oraz kompensowane odkształcenie. Wynikiem badania jest maksymalne naprężenie indukowane termicznie zarejestrowane przy pęknięciu próbki oraz temperatura pęknięcia.

Wynik jest uznawany za poprawny jeżeli wyniki z 3 kolejnych oznaczeń:

- temperatury krytycznej nie różnią się od siebie o więcej niż 2°C,
- naprężeń termicznych nie różnią się od siebie o więcej niż 0,5 MPa.

Sposób zamocowania próbki w badaniu TSRST przedstawiono na rysunku 2.2.

Rysunek 2.2. Sposób zamocowania próbki w badaniu TSRST

2.3. Wyniki badań

2.3.1. Wyniki badań zginania pod stałym obciążeniem (pełzania)

Wyniki badań zginania pod stałym obciążeniem oraz sposób interpretacji wyników został przedstawiony w raporcie z II etapu prac i zostanie w etapie III pominięty.

Poniżej przestawiono krzywe sztywności mieszanek mineralno-asfaltowych uzyskane z badań pełzania dla mieszanek mineralno-asfaltowych bez starzenia i po starzeniu krótkoterminowym w suszarce. Wyniki badań zostały wykorzystane przy tworzeniu krzywych wiodących dla poszczególnych mieszanek. Krzywe sztywności pełzania przedstawiono na rysunkach od 2.3 do 2.7:

Rysunek 2.3. – Krzywe sztywności pełzania dla mieszanki AC16W 35/50 po starzeniu krótkoterminowym w suszarce w zależności od czasu trwania obciążenia w różnych temperaturach badania

Rysunek 2.4. – Krzywe sztywności pełzania dla mieszanki AC WMS16 20/30 po starzeniu krótkoterminowym w suszarce w zależności od czasu trwania obciążenia w różnych temperaturach badania

Rysunek 2.5. – Krzywe sztywności pełzania dla mieszanki AC 16W 50/70 po starzeniu krótkoterminowym w suszarce w zależności od czasu trwania obciążenia w różnych temperaturach badania

Rysunek 2.6. – Krzywe sztywności pełzania dla mieszanki AC WMS16 25/55-60 po starzeniu krótkoterminowym w suszarce w zależności od czasu trwania obciążenia w różnych temperaturach badania

Rysunek 2.7. – Krzywe sztywności pełzania dla mieszanki AC WMS16 20/30 multigrade po starzeniu krótkoterminowym w suszarce w zależności od czasu trwania obciążenia w różnych temperaturach badania

Wyniki badań zginania pod stałym obciążeniem zostały wykorzystane do utworzenia krzywych wiodących poszczególnych mieszanek mineralno-asfaltowych. Procedura została przedstawiona w rozdziale 2.3.2.

2.3.2. Wyniki badań zginania belek ze stałą prędkością wzrostu ugięć

Wyniki badania zginania ze stałą prędkością wzrostu ugięć zostały przedstawione wyłącznie dla próbek poddanych procedurze starzenia krótkoterminowego. Pozostałe wyniki zostały przedstawione w raporcie z II etapu prac, opracowanym w 2012 r. [11].

W tablicy 2.1 przedstawiono wyniki badania zginania za stałą prędkością wzrostu ugięć, wykonaną dla pięciu mieszanek mineralno-asfaltowych. Przy wyznaczaniu odkształceń granicznych ε_{gr} oraz modułów sztywności E_0 odrzucono wyniki próbek, w których pęknięcie wystąpiło poza bazą pomiarową oraz wyniki próbek w których błąd oprogramowania uniemożliwił odczyt wyników.

W tablicy 2.1 tych przyjęto następujące oznaczenia:

- R_{zg} wytrzymałość na zginanie, MPa,
- ϵ_{gr} odkształcenie graniczne, 10⁻³,
- E₀ moduł sztywności, MPa,
- n₁ liczba badanych próbek, szt.,
- n₂ liczba zaakceptowanych wyników, szt.,
- \overline{x} wartość średnia wielkości x po odrzuceniu niezaakceptowanych wyników,
- S₀ odchylenie standardowe wielkości x po odrzuceniu niezaakceptowanych wyników,
- V_x współczynnik zmienności po odrzuceniu niezaakceptowanych wyników,

$$V_x = \frac{S_0}{\overline{x}}.$$

Tomp			F	R _{zg}				ε _{gr}					E ₀		
(°C)	n ₁	n ₂		S ₀ [MPa]	V _x [%]	n ₁	n ₂		S₀ [10 ⁻³]	V _x [%]	n ₁	n ₂	 [MPa]	S₀ [MPa]	V _x [%]
Mieszanka AC 16W 35/50															
0	8	8	6,00	0,61	10,20	8	5	4,044	0,537	13,28	8	4	4666	901	19,30
-10	4	4	5,49	1,06	19,36	4	4	1,448	0,710	49,11	4	4	6925	1455	21,01
-20	4	4	6,12	0,59	9,72	4	2	0,951	0,039	4,10	4	2	9639	881	9,14
-30	9	9	4,91	1,38	28,06	9	2	0,673	0,073	10,48	9	2	10074	213	2,11
				· · · · · · · · · · · · · · · · · · ·		Mies	zanka	AC WMS16	5 20/30					• •	
0	8	8	7,21	0,57	7,95	8	5	2,153	0,758	35,21	8	5	7168	1526	21,29
-10	4	4	6,99	0,29	4,18	4	3	1,442	0,416	28,82	4	3	9437	456	4,83
-20	4	4	6,02	1,15	19,04	4	3	0,939	0,097	10,28	4	3	9492	665	7,01
-30	9	9	6,16	0,80	12,94	9	6	0,707	0,186	26,34	9	5	10483	913	8,71
						Mie	eszan	ka AC 16W ؛	50/70						
0	3	3	6,59	1,21	18,35	3	3	4,825	0,167	3,47	3	3	5300	1220	23,03
-10	4	4	7,21	0,90	12,45	4	4	1,267	0,362	28,61	4	4	9350	1799	19,25
-20	4	4	6,89	0,08	1,21	4	3	0,690	0,083	12,06	4	3	13337	1705	12,79
-30	4	4	5,54	0,36	6,55	4	3	0,530	0,127	23,99	4	3	13794	2460	17,84
					Ν	liesza	anka /	AC WMS162	25/55-60						
0	3	3	5,82	0,53	9,11	3	3	6,197	1,448	23,37	3	3	4257	652	15,32
-10	4	4	7,85	0,78	9,95	4	3	1,678	0,445	26,54	4	3	8533	1004	11,77
-20	4	4	7,82	0,90	11,52	4	3	0,987	0,245	24,83	4	2	11160	194	1,74
-30	4	4	7,86	1,09	13,83	4	3	0,851	0,314	36,84	4	3	16864	864	5,12
					Miesz	anka	a AC \	VMS16 20/3	0 multigra	ade					
0	3	3	4,17	0,11	2,67	3	3	3,659	0,42	11,57	3	3	3580	9,28	0,26
-10	4	3	6,27	0,67	10,76	4	2	2,961	0,068	2,30	4	2	6176	114	1,85
-20	4	3	7,07	0,35	4,89	4	3	1,743	0,214	12,25	4	3	7720	584	7,56
-30	4	4	6,97	0,40	5,76	4	2	1,298	0,249	19,15	4	2	10649	2356	22,13

Tablica 2.1. Zestawienie wyników badania zginania ze stałą prędkością wzrostu ugięć materiałów poddanych starzeniu krótkoterminowemu

16

Rys 2.8. Zestawienie wyników wytrzymałości na rozciąganie przy zginaniu mieszanek poddanych starzeniu krótkoterminowemu

Rys 2.9. Zestawienie wyników odkształcenia granicznego przy zginaniu mieszanek poddanych starzeniu krótkoterminowemu dla temperatur od 0°C do -30°C

Rys 2.10. Zestawienie wyników odkształcenia granicznego przy zginaniu mieszanek poddanych starzeniu krótkoterminowemu dla temperatur od -10°C do -30°C

2.3.2.1. Analiza wyników badania zginania belek ze stałą prędkością wzrostu ugięć

Z tablicy 2.1 wynika że:

- Rozrzuty wyników badania w większości przypadków są umiarkowane i współczynnik zmienności V_x jest poniżej 20%. Są jednak przypadki, gdy Vx dochodzi do 35% a nawet 50%. Znaczna liczba próbek została odrzucona ze względu na pęknięcie próbek poza zakresem pomiarowym.
- Wytrzymałość na rozciąganie przy zginaniu w przypadku 3 na 5 badanych mieszanek wzrasta do T = -20°C, a przy T = -30°T spada.
- Odkształcenia graniczne są największe dla AC WMS z zastosowaniem asfaltu 20/30 multirade (1,298×10⁻³ w T = -30°C) i znacznie mniejsze w pozostałych przypadkach (0,530-0,851×10⁻³). Przy zastosowaniu asfaltu modyfikowanego otrzymano mieszankę o większej odkształcalności niż przy użyciu asfaltów zwykłych, ale o mniejszej niż przy użyciu asfaltu multigrade.
- Moduły E₀ rosną ze spadkiem temperatury. Trudno jest wyciągnąć wnioski dotyczące wpływu zastosowanego asfaltu na moduł E₀, ze względu na duże rozrzuty wyników.

2.3.3. Wyniki badań modułu dynamicznego

W roku 2013 zostały uzupełnione wyniki badań modułu dynamicznego. Procedura badania i interpretacja wyników zostały przedstawione w raporcie z drugiego etapu prac. By dokładniej zamodelować nawierzchnię w programie VEROAD wykonano

badania dla mieszanki SMA8 z asfaltem 45/80-55. Badania mieszanki SMA, jako materiału do warstwy ścieralnej, było konieczne, aby możliwe było przyjęcie parametrów reologicznych dla wszystkich warstw asfaltowych (warstwa ścieralna, wiążąca i podbudowa asfaltowa) w analizach konstrukcji nawierzchni. Poniżej przedstawiono wyniki badań, krzywą wiodącą utworzoną na podstawie badań dynamicznych z wykorzystaniem wyników badań modułu sztywności w temperaturach od -40°C do -10°C oraz krzywą Blacka. Próbki mieszanki SMA nie były poddawane procedurze starzenia.

	Temperatura				Czę	stotliwość	badania, f	[Hz]			
Próbka	badania, T [°C]	25	20	10	5	2	1	0,5	0,2	0,1	0,01
C80		16 265	15 968	15 042	14 086	12 809	11 755	10 759	9 438	8 453	n/b
C81	4,1	16 338	16 216	15 361	14 447	13 192	12 250	11 281	9 908	8 862	n/b
C82		15 512	15 120	14 206	13 290	12 041	11 081	10 118	8 881	7 955	n/b
Średnia a	rytmetyczna	16 038	15 768	14 870	13 941	12 681	11 695	10 719	9 409	8 423	-
Odchylen	ie standard.	373	469	487	483	479	479	476	420	371	-
C83		7 456	7 194	6 269	5 409	4 388	3 705	3 114	2 420	1 984	n/b
C84	20,4	7 046	6 924	6 084	5 256	4 250	3 593	3 008	2 331	1 904	n/b
C85		7 908	7 565	6 555	5 624	4 531	3 816	3 189	2 476	2 022	n/b
Średnia a	rytmetyczna	7 470	7 228	6 303	5 430	4 390	3 705	3 104	2 409	1 970	-
Odchylen	ie standard.	352	263	194	151	115	91	74	60	49	-
C86		2 101	1 987	1 576	1 241	878	692	541	389	302	160
C87	41,1	2 258	2 1 1 0	1 672	1 315	936	743	588	434	347	187
C88		2 101	1 998	1 618	1 293	935	750	600	448	361	198
Średnia arytmetyczna		2 153	2 032	1 622	1 283	916	728	576	423	337	182
Odchylen	ie standard.	74	56	39	31	27	26	26	25	25	16

Tablica 2.2. Wyniki badań dynamicznego modułu sztywności dla mieszanki SMA 45/80-55 nie poddanej procedurze starzenia.

	Temperatura				Czę	stotliwość	badania, f	[Hz]			
Próbka	badania, T [°C]	25	20	10	5	2	1	0,5	0,2	0,1	0,01
C80		7,82	8,05	8,80	9,60	10,67	11,68	12,66	14,10	15,37	n/b
C81	4,1	7,52	7,65	8,40	9,14	10,20	11,12	12,11	13,67	14,90	n/b
C82		8,11	8,24	8,95	9,72	10,83	11,76	12,81	14,37	15,72	n/b
Średnia a	arytmetyczna	7,82	7,98	8,72	9,49	10,57	11,52	12,53	14,05	15,33	-
Odchyler	nie standard.	0,24	0,25	0,23	0,25	0,27	0,28	0,30	0,29	0,34	-
C83		18,15	18,53	20,17	21,67	23,60	24,88	25,99	27,38	28,07	n/b
C84	20,4	18,11	18,56	20,14	21,64	23,63	24,85	25,94	27,39	28,02	n/b
C85		17,95	18,49	20,17	21,73	23,66	24,94	26,04	27,42	28,14	n/b
Średnia a	arytmetyczna	18,07	18,53	20,16	21,68	23,63	24,89	25,99	27,40	28,08	-
Odchyler	nie standard.	0,09	0,03	0,01	0,04	0,02	0,04	0,04	0,02	0,05	-
C86		31,81	31,37	31,99	32,21	32,33	31,48	30,60	29,84	28,97	24,31
C87	41,1	31,61	31,12	31,73	31,84	31,74	30,68	29,60	28,17	26,96	22,94
C88		30,77	30,15	30,70	30,79	30,71	29,74	28,74	27,39	26,00	22,32
Średnia arytmetyczna		31,40	30,88	31,47	31,61	31,59	30,63	29,65	28,47	27,31	181,87
Odchyler	nie standard.	0,45	0,53	0,56	0,60	0,67	0,71	0,76	1,02	1,24	16,02

Tablica 2.3. Wyniki badań kąta przesunięcia fazowego dla mieszanki SMA 45/80-55 nie poddanej procedurze starzenia.

Rysunek 2.11. – Krzywa wiodąca dla mieszanki SMA11 45/80-55 utworzona dla temperatury referencyjnej 20°C

Rysunek 2.12. – Krzywa Blacka dla mieszanki SMA11 45/80-55

2.3.4. Wyniki badań modułu sztywności w metodzie pośredniego rozciągania

Badanie modułu sztywności w metodzie pośredniego było wykonane w dwóch celach:

- ustalenie maksymalnego modułu sztywności w temperaturze ujemnej (do utworzenia krzywej wiodącej),
- ocena właściwości niskotemperaturowych badanych mieszanek mineralnoasfaltowych.

Badano mieszanki poddane procedurze starzenia krótkoterminowego.

W tablicy 2.4 przedstawiono wyniki badań modułu sztywności badanych mieszanek mineralno-asfaltowych.

Tablica 2.4 – Moduły sztywności mieszanek mineralno-asfaltowych po starzeniu krótkoterminowym uzyskane w badaniu pośredniego rozciągania

		Moduł sztywności po starzeniu krótkoterminowym [MPa] dla temperatury badania T [°C] równej									wnej:	
Materiał			-40°C				-30°C				-20°C	
Matorial	n	 [MPa]	S _x [MPa]	V _x [%]	n	 [MPa]	S _x [MPa]	V _x [%]	n	 [MPa]	S _x [MPa]	V _x [%]
AC 16W 35/50	3	26 179	2 374	9,07	3	27 041	1 671	6,18	3	24 638	2 098	8,52
AC 16W 50/70	3	30 171	1 976	6,55	3	28 164	772	2,74	3	26 646	974	3,66
AC WMS16 20/30	3	26 416	1 717	6,50	3	27 258	2 299	8,43	3	23 916	1 417	5,92
AC WMS16 25/55-60	3	27 349	775	2,83	3	26 221	979	3,73	3	22 942	1 917	8,36
AC WMS16 20/30 multigrade	3	24 707	1 045	4,23	3	22 006	1 034	4,70	3	18 377	891	4,85

W tablicy użyto następujących oznaczeń:

n – liczba wyników,

 \bar{x} – wartość średnia wielkości x

S_x – odchylenie standardowe wielkości x

v_x – współczynnik zmienności

2.4. Krzywe wiodące mieszanek mineralno-asfaltowych wyznaczone na podstawie pełzania próbek belkowych przy zginaniu

Krzywe wiodące mieszanek mineralno-asfaltowych były wyznaczane na podstawie wyników z badania pełzania statycznego przy zginaniu.

Procedurę wyznaczania krzywych wiodących mieszanek mineralno-asfaltowych na podstawie badań modułu dynamicznego przedstawiono w drugim etapie prac, w raporcie [11]. Zostanie więc ona tutaj pominięta. Przedstawiona zostanie wyłącznie procedura uzyskiwania krzywych wiodących na podstawie badania pełzania statycznego.

Krzywą wiodącą uzyskano z badania pełzania statycznego poprzez nasunięcie na siebie średnich krzywych pełzania uzyskanych w temperaturach 0, -10 oraz -20°C. Dla części mieszanek wykorzystano także badania pełzania statycznego wykonane w temperaturze 10 oraz 25°C. Jako temperaturę referencyjną ustalono 0°C. Krzywe pełzania dla poszczególnych temperatur wyznaczono w oparciu moduły sztywności obliczone dla następujących czasów: 8, 15, 30, 60, 120, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600 sekund. Czasy dobrano opierając się o ekstrapolację specyfikacji badania przeprowadzanego w urządzeniu BBR, tak by objąć cały zakres czasu obciążenia oraz zmniejszyć ilość prowadzonych obliczeń. W przypadku skróconego badania pełzania, zakres odczytywanych modułów kończy się dla czasu 2400 sekund. Przykładowe krzywe pełzania dla temperatur 0, -10 oraz -20°C przedstawiono na rysunku 2.13. jako wartości średnie (linie ciągłe) oraz wartości uzyskane dla poszczególnych badań (punkty). W każdej temperaturze badano pełzanie minimum 3 próbek.

Rysunek 2.13. Przykładowe krzywe pełzania uzyskane z badania pełzania statycznego dla mieszanki AC WMS16 20/30 multigrade.

Na przedstawionym rysunku można zauważyć cechy wykresów utrudniające korzystanie z teoretycznych modeli uzyskania krzywych wiodących.

Rysunek 2.14. Zaburzenia w przebiegu krzywych S(T,t) w temperaturach poniżej 0°C

Na rysunku 2.14 wyjaśniono sprawę zaburzeń w charakterze krzywej S(T,t). Krzywa "A" jest zgodna z teorią superpozycji czasowo-temperaturowej. Opada ona monotonicznie dla rosnących czasów obciążenia t. Krzywa "B" ma zaburzenia w strefie zaznaczonej na rysunku i wypłaszcza się dla dłuższych czasów obciążenia t.

Zaburzenie to wynika z charakteru krzywej pełzania co pokazano na rysunku 2.15. Przy dłuższych czasach obciążenia t materiał "B" charakteryzuje się odkształceniem zmierzającym do stałej wartości $lim \varepsilon(t) \rightarrow \varepsilon_0$.

Rysunek 2.15. Krzywe pełzania dla krzywych S(T,t) o przebiegu zgodnym z teorią superpozycji czasowo-temperaturowej "A" oraz o przebiegu zaburzonym "B".

Zaburzenie przebiegu krzywej "B' ma wpływ na budowę krzywej wiodącej (rys. 2.16). Końcówka krzywej "B" po przesunięciu nie pokrywa się z krzywą "A" (patrz zaznaczony fragment). Powoduje to zwiększenie rozrzutu wyników przy budowie krzywej wiodącej.

Rysunek 2.16. Budowa krzywej wiodącej z krzywą S(T,t) o zaburzonym przebiegu.

Opisane zaburzenia wynikają z faktu, że w niskich temperaturach przy zginaniu belek z mieszanek mineralno-asfaltowych ugięcie dla czasów dłuższych od 1000 sekund dąży asymptotycznie do stałej wartości. Dotyczy to zwłaszcza pełzania przy naprężeniach mniejszych od około 50% wytrzymałości na zginanie. Takiego rzędu wartości naprężeń występują w nawierzchni, gdzie naprężenia rzadko przekraczają 50% wytrzymałości na zginanie.

Współczynnik przesunięcia α_T uzyskiwano wykorzystując metodę najmniejszych kwadratów oraz dodatek SOLVER pakietu EXCEL. Zastosowano następującą procedurę wyznaczania współczynnika przesunięcia α_T :

 Średnie krzywe pełzania uzyskiwane w temperaturach -10 i -20°C opisywano równaniem (2.2) dla czasów obciążenia od 8 do 1000 sekund z wyłączeniem strefy wypłaszczania się krzywej:

$$\log S = a \cdot \log t^2 + b \cdot \log t + c \tag{2.2}$$

gdzie:

- Š moduł sztywności mieszanki mineralno-asfaltowej dla zadanego czasu obciążenia, MPa
- t czas obciążenia, s
- a, b, c parametry dopasowania funkcji.

Parametry dopasowania funkcji a, b i c zostały wyznaczone przy pomocy metody najmniejszych kwadratów. Przykład opisu krzywej pełzania na rysunku 2.17.

Rysunek 2.17. Przykład opisu krzywej pełzania przy pomocy funkcji (2.2); zaznaczono strefę nie objętą opisem

- 2. Dla średnich krzywych pełzania w temperaturach 0, -10 i -20°C wyznaczono moduły sztywności dla wybranych czasów obciążenia.
- 3. Utworzono funkcję przesuwającą krzywe pełzania w taki sposób by różnica pomiędzy modułami była jak najmniejsza. Funkcja przyjmuje postać:

$$F = \left\{ \left[S(t_1) - S(\xi_i) \right]^2 + \left[S(t_2) - S(\xi_2) \right]^2 + \dots + \left[S(t_n) - S(\xi_n) \right]^2 \right\}$$
(2.3)

gdzie:

- F wartość funkcji obliczana przy pomocy dodatku SOLVER, tak by uzyskać jak najmniejszą wartość (wartością zmienną był współczynnik przesunięcia α_T wykorzystywany do obliczenia czasu zredukowanego dla krzywej pełzania uzyskanej w temperaturze T=T_{ref}-10°C)
- t_i czas obciążenia dla krzywej pełzania w temperaturze T_{ref},
- $ξ_i$ czas zredukowany dla krzywej pełzania w temperaturze T=T_{ref}-10°C dany funkcją: $ξ = \frac{t}{\alpha_r}$
- α_{T} współczynnik przesunięcia.

Przykładową krzywe wiodącą uzyskaną poprzez przesuwanie krzywych pełzania przy pomocy dodatku SOLVER przedstawiono na rysunku 2.18. Na rysunku 2.18 widać odchylenia od krzywej wiodącej wynikające z wypłaszczania się krzywych pełzania log S – log t.

Rys 2.18 Krzywa wiodąca dla przykładowej mieszanki mineralno-asfaltowej uzyskana przy pomocy dodatku SOLVER (temperatura referencyjna 0°C)

Parametryzację krzywej wiodącej wykonano w oparciu o dopasowanie funkcją sigmoidalną symetryczną (CAM) opracowaną przez Christiansena, Marasteanu i Andersona [8] do opisu krzywych wiodących uzyskanych dla asfaltów na podstawie badań przeprowadzanych w reometrach.

Wzór modelu CAM przyjmuje następującą postać [9]:

$$S(T_{ref},\xi) = S_{glassy} \left[1 + \left(\frac{\xi}{\lambda}\right)^{\beta} \right]^{-\frac{\kappa}{\beta}}$$
(2.4)

gdzie:

S(T_{ref},ξ) - moduł sztywności mieszanki mineralno-asfaltowej dla zadanej temperatury referencyjnej Tref i czasu zredukowanego ξ,

- S_{glassy} moduł przejścia szklistego dla mieszanki mineralno-asfaltowej (moduł sztywności ograniczający krzywą wiodącą), dla asfaltu przyjmuje wartość S_{glassy} = 3000 MPa, dla mieszanek mineralno-asfaltowych przyjęto wartość uzyskaną z badania modułu sztywności w schemacie IT-CY w temperaturze -30°C,
- λ, β, κ parametry dopasowania krzywej wiodącej.

Krzywe wiodące dopasowano przy użyciu dodatku SOLVER programu EXCEL. Przykład dopasowania krzywej wiodącej w oparciu o model CAM przedstawiono na rysunku 2.19.

Rys 2.19. Dopasowanie przykładowej krzywej wiodącej przy pomocy modelu CAM

Na rysunku linią czarną przedstawiono krzywą wiodącą jako dopasowanie wszystkich punktów badań, punktami zaznaczono wyniki poszczególnych próbek badań, liniami czerwonymi opisano krzywe wiodące utworzone z uwzględnieniem średniej kwadratowej dopasowania wyników badań do krzywej wiodącej CAM.

Krzywa wiodąca uzyskana dla poszczególnych mieszanek mineralno-asfaltowych charakteryzowana jest następującymi pięcioma parametrami:

- moduł sztywności przejścia szklistego S_{glassy},
- parametry dopasowania modelu CAM λ,β,κ
- współczynnikami przesunięcia α_T(T).

W celu wyznaczenia współczynnika α_T wykorzystywano dane z pełzania w temperaturach 0°C, -10°C oraz -20°C. Przy temperaturze referencyjnej 0°C uzyskiwano współczynnik przesunięcia dla T = -10°C oraz T = -20°C.

Dokładność dopasowania krzywej wiodącej opisanej modelem CAM w stosunku do danych z badania określona jest przy pomocy średniej kwadratowej według wzoru:

$$rms(\%) = 100\sqrt{\frac{SSRE}{n}}$$
(2.5)

gdzie:

$$SSRE = \sum_{i=1}^{n} \left[\frac{(S(\xi) - S(\xi)_{dop})}{S(\xi)} \right]^{2}$$
(2.6)

- n ilość punktów dopasowywania krzywej wiodącej,
- SSRE suma kwadratów błędu względnego,
- S(ξ) moduł sztywności dla czasu zredukowanego ξ wyznaczony z badania zginania ze stałym obciążeniem
- $S(\xi)_{\text{dop}}\text{-}$ moduł sztywności dla czasu zredukowanego ξ wyznaczony z dopasowania modelem CAM.

Wnioski ze stosowania dopasowania krzywej wiodącej modelem CAM:

- Model CAM jest jedną z wielu funkcji sigmoidalnych wykorzystywanych do opisu krzywej wiodącej modułu sztywności dla asfaltów.
- Model CAM jest z powodzeniem wykorzystywany do opisu mieszanek mineralno-asfaltowych na podstawie danych uzyskanych z urządzenia BBR dla czasów obciążenia wynoszących 1000 sekund [10].
- Model CAM w odróżnieniu od modelu wykorzystywanego w opisie badań dynamicznych nie zawiera w swojej formule współczynników przesunięcia α_T.
- Dopasowanie modelem CAM nie zawsze dobrze oddawało charakter uzyskanej krzywej wiodącej. Dotyczy to czasów obciążenia dłuższych od 1000 sekund. W przypadku niektórych krzywych dla czasów zredukowanych od 1000 do 3600 sekund występuje niedoszacowanie rzeczywistych modułów sztywności.
- Typowy błąd wyznaczony na podstawie średniej kwadratowej jest na poziomie około 10 - 30%.

2.5. Bibliografia do rozdziału 2

- [1] PN-EN 12697-46 Mieszanki mineralno-asfaltowe Metody badań mieszanek mineralno-asfaltowych na gorąco Część 46: Pękanie niskotemperaturowe i właściwości w badaniach osiowego rozciągania
- [2] AASHTO R30-02 Standard Practice for Mixture Conditioning of Hot-Mix Asphalt (HMA), Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part 1B: Specifications, 26th Edition 2006, American Association of State Highway and Transportation Officials
- [3] SHRP M-007 Standard Method of Test for Short- and Long-Term Aging of Bituminous Mixes, The SUPERPAVE Mix Design System Manual of Specifications, Test Methods, and Practices, SHRP-A-379, Strategic Highway Research Program, National Research Council, Washington, DC 1994
- [4] PN-EN 12697-26:2005 Mieszanki mineralno-asfaltowe Metody badań mieszanek mineralno-asfaltowych na gorąco Część 26: Sztywność
- [5] Judycki J., Drogowe asfalty i mieszanki mineralno-asfaltowe modyfikowane elastomerem, Zeszyty Naukowe Politechniki Gdańskiej, Budownictwo Lądowe, 452, 1991
- [6] Williams M., Landel R. F., Ferry J. D., The Temperature Dependance of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids, Journal of the American Chemical Society, Vol. 77, p. 3701-3707, 1955
- [7] Rowe G. M., Sharrock M. J., Alternate Shift Factor Relationship for Describing the Temperature Dependency of the Visco-Elastic Behaviour of Asphalt Materials, Transportation Research Record, , vol 2207, p. 125-135, 2011
- [8] Marasteanu M. O., Anderson D.A., Improved Model for Bitumens Rheological Characterization, Eurobitume Workshop on Performance-Related Properties for Bituminous Binders, Paper No. 133, Luxembourg, May 1999
- [9] AASHTO PP42-02 Standard Practice for Determination of Low-Temperature Performance Grade (PG) of Asphalt Binders, 2006 AASHTO Provisional Standards, American Association of State Highway and Transportation Officials

- [10] Velasquez R., Zofka A., Turos M., Marasteanu M. O., Bending Beam Rheometer Testing of Asphalt Mixtures, Internationa Journal of Pavement Engineering, 2009
- [11] Judycki J., Dołżycki B., Pszczoła M., Jaczewski M., Mejłun Ł., Ryś D., "Badanie wpływu zastosowania warstw betonu asfaltowego o wysokim module sztywności (AC-WMS) w konstrukcjach nawierzchni na spękania niskotemperaturowe i na zmniejszenie powstawania deformacji trwałych", raport z drugiego etapu, Gdańsk, listopad 2012

3. Analiza konstrukcji nawierzchni w warunkach podwyższonych temperatur z wykorzystaniem programu VEROAD cz.2

3.1. Wstęp

W niniejszym rozdziale analizie poddane zostały wyniki symulacji pracy konstrukcji nawierzchni podatnej w kontekście trwałych i całkowitych deformacji pionowych w warunkach podwyższonej temperatury (przy założeniu, że temperatura powierzchni jezdni wynosi 40°C). Obliczenia i analizy oparto o teorię lepkosprężystości.

Symulacjom poddano typową, katalogową konstrukcję nawierzchni typu A (z podbudową z kruszywa) dla kategorii ruchu KR-5, wg. [3.3], ułożoną na podłożu gruntowym o grupie nośności G1. W celu określenia wpływu położenia warstwy wykonanej z betonu asfaltowego o wysokim module sztywności (AC WMS) obliczenia wykonano dla 4 wariantów założonej konstrukcji nawierzchni, różniących się położeniem warstwy wykonanej z AC WMS – (1) konstrukcja bez wykorzystania AC WMS, (2) konstrukcja z warstwą wiążącą z AC WMS, (3) konstrukcja z podbudową asfaltową wykonaną z AC WMS oraz (4) konstrukcja z warstwą wiążącą i podbudową asfaltową, wykonanymi z AC WMS.

Wszystkie warstwy asfaltowe modelowano jako lepkosprężyste, z wykorzystaniem liniowego modelu lepkosprężystości Burgersa. Podbudowa z kruszywa i podłoże gruntowe modelowano były jako materiały idealnie liniowo sprężyste Hooke'a.

Nawierzchnia obciążona została kołem pojedynczym o ciężarze 57,5 kN, poruszającym się ze stałą prędkością 60 km/h.

3.2. Przyjęcie wariantów konstrukcji nawierzchni do analiz

Do obliczeń przyjęto podatną konstrukcję nawierzchni z dolną warstwą podbudowy zasadniczej wykonanej z kruszywa (typ konstrukcji A) ułożonej na podłożu gruntowym grupy nośności G1, przyjętą dla kategorii ruchu KR-5 według Katalogu Typowych Konstrukcji Nawierzchni Podatnych i Półsztywnych 2012 [3.3].

Rysunek 3.1. Schemat konstrukcji nawierzchni przyjętej do analiz, wg [3.3]

Do analiz przyjęto 4 warianty założonej konstrukcji nawierzchni:

- wariant A z warstwą wiążącą i górną warstwą podbudowy zasadniczej wykonanymi z betonu asfaltowego (AC),
- wariant B z warstwą wiążącą z typowego betonu asfaltowego (AC) i górną warstwą podbudowy zasadniczej z betonu asfaltowego o wysokim module sztywności (AC WMS),
- wariant C z warstwą wiążącą z betonu asfaltowego o wysokim module sztywności (AC WMS) i górną warstwą podbudowy zasadniczej z typowego betonu asfaltowego (AC),
- wariant D z warstwą wiążącą i górną warstwą podbudowy zasadniczej wykonanymi z betonu asfaltowego o wysokim module sztywności (AC WMS).

Dla wszystkich wariantów założono, że:

- grubości warstw pozostają niezmienne,
- warstwa ścieralna jest wykonana z mastyksu grysowego (SMA),
- zmienia się jedynie materiał warstwy wiążącej i górnej warstwy podbudowy zasadniczej (asfaltowej) w zależności od wariantu,
- konstrukcja spoczywa na podłożu gruntowym doprowadzonym do grupy nośności G1.

Warstwa konstrukcji			Wariant konstrukcji nawierzchni						
nawierz	, chni	wariant A	wariant A wariant B wariant C						
écioralna		SMA 8	SMA 8	SMA 8	SMA 8				
Scieraina		45/80-55	45/80-55	45/80-55	45/80-55				
wiażaca	wieteee		AC 16 W	AC WMS 16	AC WMS 16				
wiąząca		35/50	35/50	20/30	20/30				
	górna	AC 22 P	AC WMS 16	AC 22 P	AC WMS 16				
podbudowa	warstwa	35/50	20/30	35/50	20/30				
zasadnicza	dolna	KŁ SM	KŁ SM	KŁ SM	KŁ SM				
warstwa		REOM	REOM	REOM	REOM				
podłoże naw	ierzchni	doprowadz	doprowadzone do grupy nośności G1, E ₂ = 120 MPa						

Tablica 3.1. Materiały warstw wariantowych konstrukcji nawierzchni

3.3. Przyjęcie temperatury w warstwach asfaltowych

W celu określenia temperatury poszczególnych warstw asfaltowych analizie poddano dane temperaturowe uzyskane ze stacji pomiarowej GDDKiA w Redzikowie (droga ekspresowa S6, k. Słupska) z roku 2012. Na podstawie dobowych temperatur nawierzchni o godzinie 12:00, wybrano najcieplejszy miesiąc roku – lipiec, a następnie w oparciu o najwyższe dobowe temperatury nawierzchni do dalszej analizy wybrano trzy dni tego miesiąca – 24, 25 i 26 lipca. Przebieg zmian temperatur powierzchni jezdni w ciągu tych 3 dób ilustruje rysunek 3.2. Linią ciągłą zaznaczono przebieg zmian temperatury uzyskany z pomiarów, przerywaną zaś przybliżenie tej zmienności za pomocą funkcji sinus.

Rysunek 3.2. Przebieg dobowych zmian temperatury powierzchni jezdni od 24 do 26 lipca 2012 w stacji pomiarowej Redzikowo (S6)

Dla analizowanych 3 dób w miesiącu lipcu, otrzymano wyjątkowo dobrą zgodność dobowych zmian temperatury z funkcją opisującą (sinusoidą). Często bywa jednak w rzeczywistości tak, że trudno jest opisać jedną funkcją zmiany temperatur w ciągu doby. Spowodowane jest to dużą i nieregularną ich zmiennością. Wahania wykazujące niejednokrotnie dużą przypadkowość spowodowane są wieloma czynnikami wpływającymi na kształtowanie się temperatury (wpływ mikroklimatu, zmienność warunków pogodowych, w tym np. wpływ chłodzenia wiatrem, opadów, nasłonecznienia i wielu innych).

Dobową zmianę temperatury powierzchni jezdni w analizowanych 3 dobach przybliżono sinusoidą o równaniu ogólnym:

$$T_0(t) = T_M + T_A \times \sin\left(2\pi \times \frac{t}{24} + \tau\right)$$
(3.1)

gdzie:

 $T_0(t)$ – temperatura powierzchni jezdni w *t*-tej godzinie pomiaru, °C

 T_M – temperatura średnia powierzchni jezdni, równa T_A = 33,9°C

 T_A – dobowa amplituda zmian temperatury powierzchni jezdni, równa T_A = 16,7°C

 τ – korekta wynikająca z przesunięcia godziny pierwszego pomiaru w stosunku do funkcji sinus opisującej zmiany dobowe temperatur, równa τ = 1,25 π

Do określenia temperatury poszczególnych warstw asfaltowych wykorzystano za Judyckim [3.1] rozwiązanie równania różniczkowego Fouriera przepływu ciepła przez ośrodek jednorodny (przy założeniu dobowych zmian temperatury powierzchni jezdni zgodnie z równaniem (3.1)) postaci:

$$T(t,z) = T_M + T_A \times \exp((-\lambda z) \times \sin\left(2\pi \times \frac{t}{24} - \lambda z + \tau\right)$$
(3.2)

gdzie dodatkowo:

T(t,z) – temperatura warstw asfaltowych w *t*-tej godzinie pomiaru, na głębokości z [m], °C

 λ – współczynnik zależny od termicznych właściwości materiału, równy:

$$\lambda = \sqrt{\frac{\pi \times C \times \gamma}{24 \, K}} \tag{3.3}$$

gdzie:

- C ciepło właściwe materiału, J/kg°C
- K współczynnik przewodności cieplnej materiału, J/mh°C
- γ gęstość pozorna materiału, kg/m³.

Powyższe parametry przyjęto za Judyckim [3.1] jak dla betonu asfaltowego, wynoszące odpowiednio:

- C = 920 J/kg°C,
- K = 5 190 J/mh°C,
- $\gamma = 2 \ 400 \ \text{kg/m}^3$.

Przy powyższych założeniach równanie opisujące rozkład temperatury w warstwach asfaltowych (3.2) przyjmuje następującą postać:

$$T(t,z) = 33,9 + 16,7 \times \exp(-7,46 z) \times \sin(3,93 - 7,46 z)$$
(3.4)

Do analiz przyjęto, że temperatura na powierzchni jezdni wynosi 40°C. Sytuacja taka ma miejsce dwukrotnie w ciągu doby:

- około godziny 10:30, t = 10,4 h
- około godziny 19:30, t = 19,6 h.

Dla powyższych czasów określono przebieg zmian temperatury na grubości warstw asfaltowych w przyjętej konstrukcji nawierzchni, co pokazano na wykresie poniżej:

Temperatura warstw asfaltowych, T [deg. C]

Rysunek 3.3. Przebieg zmian temperatury na grubości warstw asfaltowych w sytuacji, gdy temperatura powierzchni jezdni wynosi 40 °C (rano – linia niebieska, wieczorem – linia czerwona)

Należy zauważyć, że funkcje te nie są ściśle monotoniczne, co oznacza, że gdzieś w środku całego pakietu warstw asfaltowych istnieje punkt o temperaturze najniższej (dla pomiaru z godz. 10:30) oraz o temperaturze najwyższej (dla pomiaru z godz. 19:30). Fakt ten związany jest ze zjawiskiem wymiany ciepła między warstwami asfaltowymi, a otoczeniem (od góry – powietrzem, od dołu – warstwami niżej leżącymi). Warstwy leżące na spodzie pakietu warstw asfaltowych wolniej nagrzewają się niż te położone wyżej (linia czerwona) i wolniej oddają ciepło, dłużej je utrzymując (linia niebieska). Odwrotna sytuacja zachodzi z warstwami leżącymi Wyeksponowane są one znacznie bardziej na zmienne warunki wyżej. temperaturowe powietrza, nasłonecznienie, chłodzenie wiatrem, deszczem itp., niż warstwy leżące niżej, dlatego zmiany ich temperatur zachodzą znacznie bardziej dynamicznie. Linia czerwona pokazuje, że najwyższa temperatura występuje w około 1/4 grubości wszystkich warstw asfaltowych, co oznacza, że ta część zdążyła podczas całego dnia (godz. 19:30) nagrzać się bardziej niż spód warstw asfaltowych, ale górne 6 cm zaczęło oddawać już ciepło w wyniku obniżenia temperatury powietrza wieczorem. Przez analogię, funkcja niebieska pokazuje, że najniższa temperatura warstw bitumicznych występuje nieco poniżej środka całego pakietu. Oznacza to, że spód warstw asfaltowych nie zdążył jeszcze ochłodzić się tak bardzo jak środek, podczas gdy górna część zaczęła zwiększać swoją temperaturę w wyniku porannego wzrostu temperatury powietrza (godz. 10:30).

Ze względu na wyższe temperatury w całym pakiecie warstw asfaltowych wieczorem (godz. 19:30), do analiz przyjęto ten właśnie rozkład temperatury (linia czerwona).

Założono ponadto, że temperaturą reprezentatywną dla każdej z warstw asfaltowych jest temperatura występująca w środkach poszczególnych warstw. Na rysunku 3.3 środki warstw asfaltowych zaznaczono liniami przerywanymi. W tablicy poniżej zestawiono uzyskane temperatury reprezentatywne wszystkich warstw asfaltowych.

Tablica 3.2. Temperatury reprezentatywne warstw asfaltowych w przyjętej konstrukcji nawierzchni

Warstwa konstrukcyjna	Materiał warstwy konstrukcyjnej	Grubość warstwy h	Głębokość położenia środka warstwy, z	Temp. warstwy
		[mm]	[mm]	[°C]
ścieralna	SMA 8	40	20	41,1
wiażaca	AC 16 W	80	80	41,5
wiąząca	AC WMS 16	80	80	41,5
podbudowa	AC 22 P	120	180	38,2
asfaltowa	AC WMS 16	120	180	38,2

3.4. Parametry materiałowe warstw konstrukcyjnych

3.4.1. Parametry materiałowe warstw asfaltowych

Dla każdej warstwy asfaltowej określono parametry liniowo lepkosprężystego modelu Burgersa (moduły sprężystości E1, E2 [MPa] i współczynniki lepkości η₁, η₂ [MPa.s]) oraz współczynnik Poissona v [-] w zależności od temperatury reprezentatywnej warstwy.

Parametry modelu Burgersa określono na podstawie wyników badania modułu dynamicznego i kąta przesunięcia fazowego próbek mieszanek mineralnoasfaltowych dla kilku częstotliwości badania, w trzech temperaturach: 4°C, 20°C i powyżej 40°C. Dla tych temperatur, przy użyciu oprogramowania VEROAD, wyznaczono parametry modelu lepkosprężystego. Parametry dla warstw wiążących (z AC 16 W i z AC WMS 16) oraz dla górnej warstwy podbudowy zasadniczej (z AC 22 P i AC WMS 16) zostały określone w poprzednim etapie prac. Parametry dla warstwy ścieralnej (SMA 8) określono później, a wyniki badań umieszczono w rozdziale 2 niniejszego opracowania. Zestawienie parametrów reologicznych dla temperatur przeprowadzonych badań dynamicznych podaje tablica 3.3.

Tablica 3.3. Parametry modelu Burgersa dla analizowanych mieszanek mineralnoasfaltowych w temperaturach badania modułu dynamicznego i kąta przesunięcia fazowego

Rodzaj	Temp.	Parametry modelu Burgersa							
mieszanki	badania	E ₁	E ₂	ηı	η_2				
minasf.	[°C]	[MPa]	[MPa]	[MPa.s]	[MPa.s]				
	4	17 987	14 214	4 515	3 197				
SMA 8	20	8 731	2 645	869	599				
	41	2 803	192	128	187				
	4	31 216	28 324	9 366	6 526				
AC 16 W	20	18 327	5 973	2 710	1 391				
	45	4 448	202	215	189				
	4	33 088	42 352	15 686	6 325				
AC 22 P	20	23 172	10 730	4 313	2 457				
	45	6 695	273	448	283				
	4	33 434	39 937	11 887	7 555				
AC WMS 16	20	20 304	10 111	3 670	2 283				
	45	6 856	440	432	438				

Wartości dla konkretnych temperatur (wynikających z temperatur reprezentatywnych warstw asfaltowych w przyjętej konstrukcji nawierzchni) określono interpolując pomiędzy danymi z badań (pomiędzy temperaturami 20 °C i 45°C). Rysunki 3.4-3.7 pokazują funkcje aproksymujące zmienność parametrów modelu Burgersa w zależności od temperatury dla analizowanych materiałów. W tablicy 3.4 zestawiono równania funkcji aproksymujących oraz kwadraty współczynników korelacji R².

Rysunek 3.4. Przebieg funkcji aproksymujących zależność modułu sprężystości E₁ [MPa] od temperatury T [°C] dla analizowanych mieszanek mineralno-asfaltowych

Rysunek 3.5. Przebieg funkcji aproksymujących zależność modułu sprężystości E₂ [MPa] od temperatury T [°C] dla analizowanych mieszanek mineralno-asfaltowych

Rysunek 3.6. Przebieg funkcji aproksymujących zależność współczynnik lepkości η₁ [MPa.s] od temperatury T [°C] dla analizowanych mieszanek mineralno-asfaltowych

Rysunek 3.7. Przebieg funkcji aproksymujących zależność współczynnik lepkości η_2 [MPa.s] od temperatury T [°C] dla analizowanych mieszanek mineralno-asfaltowych

Tablica 3.4. Funkcje aproksymujące oraz kwadraty współczynników korelacji parametrów modelu Burgrsa w zależności od temperatury (T) dla analizowanych mieszanek mineralno-asfaltowych

Matoriał	Parametr		Kwadrat
Wateria	modelu	Funkcja aproksymująca	współczynnik
warstwy	Burgersa		a korelacji R ²
	E1	= 8,01 T^2 - 770,64 T + 20941	1,0000
SWV 8	E2	= 24263 exp (-0,117 T)	0,9977
SIVIA	η1	= 6368 exp (-0,096 T)	0,9988
	η2	= 17601 T^(-1,19)	0,9870
	E1	= 6,11 T^2 – 952,14 T + 34927	1,0000
AC 16 W	E2	= 53532 exp (-0,122 T)	0,9929
AC 10 W	η1	= 14905 exp (-0,093 T)	0,9952
	η2	= 8615 exp (-0,086 T)	0,9972
	E1	= 6,90 T^2 - 986,11 T + 37268	1,0000
AC 22 P	E2	= 161000 exp (-0,142 T)	0,9778
AC 22 F	η1	= 17250 exp (-0,081 T)	0,9984
	η2	= 3,78 T^2 - 332,36 T + 7594	1,0000
	E1	= - 645,08 T + 35822	0,9997
AC WMS	E2	= 72737 exp (-0,111 T)	0,9909
16	η1	= 23095 exp (-0,087 T)	0,9991
	η2	= 9628 exp (-0,69 T)	0,9988

Wartości parametrów modelu Burgersa dla warstw konstrukcyjnych w temperaturach reprezentatywnych warstw uzyskanych z interpolacji zestawiono w tablicy 3.5.

Warstwa konstrukcyjna	Materiał	Temp.	Parametry lepkosprężystego modelu Burgersa				
	warstwy konstrukcyjnej	warstwy	E1	E ₂	η₁	η ₂	
		[°C]	[MPa]	[MPa]	[MPa]	[MPa.s]	
ścieralna	SMA 8	41,1	2 803	192	128	187	
wiążąca	AC 16 W	41,5	5 932	339	314	243	
	AC WMS 16	41,5	8 220	726	598	549	
podbudowa asfaltowa	AC 22 P	38,2	9 051	710	832	407	
	AC WMS 16	38,2	9 660	1 048	782	690	

Tablica 3.5. Parametry warstw asfaltowych przyjęte do symulacji konstrukcji nawierzchni

Współczynnik Poissona warstw asfaltowych przyjęto na podstawie danych poddanych przez Yodera i Witczaka w [3.5]. Zależność tę przedstawiono na rysunku 3.8. Parametry przyjęte dla poszczególnych warstw konstrukcyjnych zestawiono w tablicy 3.6.

Rysunek 3.8. Graficzna ilustracja współczynnika Poissona w funkcji temperatury mieszanki mineralno-asfaltowej, wg [3.5]

Tablica 3.6. Współczynniki Poissona warstw asfaltowych przyjęte do symulacji konstrukcji nawierzchni

warstwa	materiał	temp.	współczynnik Poissona
konstrukcyjna	warstwy	warstwy	v
	KONSUUKCYJNEJ	[°C]	[-]
ścieralna	SMA 8	41,1	0,475
wiążąca	AC 16 W	41,5	0,476
	AC WMS 16	41,5	0,476
podbudowa asfaltowa	AC 22 P	38,2	0,466
	AC WMS 16	38,2	0,466

3.4.2. Parametry materiałowe pozostałych warstw

Dla dolnej warstwy podbudowy zasadniczej, wykonanej z mieszanki niezwiązanej (kruszywa łamanego klasy C_{90/3}) przyjęto następujące parametry modelu materiału sprężystego Hooke'a:

- moduł sprężystości *E* = 400 MPa,
- współczynnik Poissona v = 0,30 [-].

Dla podłoża gruntowego (przy założeniu, że zostało doprowadzone do grupy nośności G1) przyjęto następujące parametry modelu materiału sprężystego Hooke'a:

- moduł sprężystości *E* = 400 MPa,
- współczynnik Poissona v = 0,35 [-].

3.4.3. Określenie sposobu obciążenia nawierzchni

Jako obciążenie konstrukcji nawierzchni przyjęto pojedyncze koło o ciężarze P = 57,5 kN poruszające się z prędkością v = 60 km/h $\approx 16,67$ m/s. Założono, że ciężar rozkłada się w sposób równomierny na powierzchni kołowej o promieniu r = 0,147 m, wynikającym z założonego ciśnienia kontaktowego o wartości q = 0,85 MPa. Sposób obciążenia nawierzchni ilustruje rysunek 3.9.

Rysunek 3.9. Schemat obciążenia założonej konstrukcji nawierzchni

3.5. Wyniki obliczeń w programie VEROAD

3.5.1. Przemieszczenia pionowe całkowite powierzchni jezdni

Przemieszczenia pionowe całkowite (lepkie i sprężyste) *Uz,całk.* obliczono dla powierzchni konstrukcji (z = 0) w przekroju podłużnym, tj. w osi ruchu koła po nawierzchni dla 4 analizowanych wariantów konstrukcji (na rysunku 3.10 i 3.11: wariant A – linia czerwona, wariant B – linia żółta, wariant C – linia zielona, wariant D – linia niebieska).

Wykresy na rysunku 3.10 oraz na rysunku 3.11 należy interpretować w ten sposób, że koło obciążające nawierzchnię porusza się ze strony prawej do lewej (porusza się w kierunku rosnących wartości ujemnych po osi poziomej) i znajduje się w punkcie (x=y=z=0). Wartości ujemne wskazują na tą część nawierzchni, po której koło pojazdu nie zdążyło jeszcze przejechać, wartości dodatnie osi poziomej zaś pokazują tą część nawierzchni, po której koło już przejechało.

Rysunek 3.10. Przemieszczenia pionowe całkowite *Uz,całk* powierzchni jezdni (y=z=0) w płaszczyźnie zgodnej z kierunkiem ruchu koła dla analizowanych wariantów konstrukcji nawierzchni przy temp. powierzchni jezdni 40°C (koło porusza się od strony prawej ku lewej)

Rysunek 3.11. Przemieszczenia pionowe całkowite *Uz,całk* powierzchni jezdni w granicach powierzchni styku koła z nawierzchnią w płaszczyźnie zgodnej z kierunkiem ruchu koła (y=z=0) dla analizowanych wariantów konstrukcji nawierzchni przy temp. powierzchni jezdni 40°C.

Na rysunku 3.11 pokazano punkty, w których obliczono wartości przemieszczeń pionowych. Rysunek stanowi powiększenie rysunku 3.6 w sąsiedztwie osi obciążenia.

Rysunek 3.12. Porównanie wartości przemieszczeń pionowych całkowitych *Uz,całk.* pod środkiem obciążenia na powierzchni konstrukcji (x=y=z=0) dla 4 analizowanych wariantów przy temp. powierzchni jezdni 40°C.

Na rysunku 3.12 w nawiasach podano stosunek, wyrażony procentowo, wartości przemieszczenia określonego dla każdego z wariantów w stosunku do przemieszczenia obliczonego dla wariantu D konstrukcji nawierzchni (100%).

3.5.2. Przemieszczenia pionowe trwałe powierzchni jezdni

Przemieszczenia pionowe trwałe (lepkie) Uz, trw. obliczono dla powierzchni konstrukcji

(z = 0) w jej przekroju poprzecznym, tj. w prostopadle do kierunku ruchu koła po nawierzchni dla 4 analizowanych wariantów konstrukcji (na rysunku 3.13 i 3.14: wariant A – linia czerwona, wariant B – linia żółta, wariant C – linia zielona, wariant D – linia niebieska).

Rysunek 3.13. Przemieszczenia pionowe trwałe *Uz,trw* powierzchni jezdni (z=0) w płaszczyźnie prostopadłej do ruchu koła (x=0) dla analizowanych wariantów konstrukcji nawierzchni przy temp. powierzchni jezdni 40°C

kombinacja materiałów warstw asfaltowych (warstwa wiążąca + podbudowa asfaltowa)

Rysunek 3.14. Porównanie wartości przemieszczeń pionowych trwałych *Uz,trw.* pod środkiem obciążenia na powierzchni konstrukcji (x=y=z=0) dla 4 analizowanych wariantów przy temp. powierzchni jezdni 40°C.

3.5.3. Porównanie przemieszczeń pionowych trwałych i całkowitych

Na rysunku 3.15 przedstawiono wartości przemieszczeń pionowych trwałych *Uz,trw* względem wartości przemieszczeń pionowych całkowitych *Uz,całk* pod środkiem obciążenia (x=y=z=0) jako ich stosunek wyrażony procentowo. Oznaczenia jak poprzednio (wariant A – linia czerwona, wariant B – linia żółta, wariant C – linia zielona, wariant D – linia niebieska).

warianty konstrukcji (materiał warstwy wiążącej + materiał podbudowy asfaltowej

Rysunek 3.15. Stosunek przemieszczenia pionowego trwałego do całkowitego Uz,trw. / Uz,całk. [%] pod środkiem obciążenia (x=y=z=0) dla temp. powierzchni jezdni 40°C

3.6. Analiza wyników i wnioski

3.6.1. Przemieszczenia pionowe całkowite powierzchni jezdni

Największe wartości przemieszczenia pionowego całkowitego są przesunięte względem środka obciążenia w kierunku przeciwnym do kierunku ruchu koła (za środkiem obciążenia). Spowodowane jest to właściwościami lepkimi mieszanek mineralno-asfaltowych. Powodują one, że reakcja (deformacja, przemieszczenie) jest opóźniona względem czasu działania wywołującej ją siły. Dlatego maksymalna deformacja pionowa nawierzchni wystąpi w momencie, gdy koło zjeżdża już z analizowanego przez nas punktu (punkt znajduje się na tylnej krawędzi śladu koła).

Dla dowolnego punktu znajdującego się w otoczeniu obciążenia, położonego w płaszczyźnie ruchu koła:

 największe deformacje całkowite uzyskano dla wariantu A konstrukcji (z warstwą wiążącą i podbudową asfaltową z typowych betonów asfaltowych), najmniejsze deformacje całkowite uzyskano dla wariantu D konstrukcji (z warstwą wiążącą i podbudową asfaltową z betonu asfaltowego o wysokim module sztywności)

Świadczy to o pozytywnym wpływie zastosowania betonu asfaltowego o wysokim module sztywności AC WMS w kontekście odporności nawierzchni na deformacje całkowite (sumaryczne trwałe i odwracalne). Różnice pomiędzy otrzymanymi wynikami dla poszczególnych wariantów są jednak małe i nie przekraczają 10% (zob. rysunek 3.12).

Spośród konstrukcji, w których jedną z warstw (wiążącą / podbudowę) wykonano z tradycyjnego betonu asfaltowego, a drugą z betonu asfaltowego o wysokim module sztywności (wariant B i wariant C) mniejsze deformacje pionowe całkowite uzyskano dla wariantu C konstrukcji, w którym beton asfaltowy o wysokim module sztywności zastosowano do warstwy wyżej leżącej (wiążącej). W warstwie tej temperatura osiąga największą wartość w całym pakiecie warstw asfaltowych, co przemawia za celowością stosowania betonu asfaltowego o wysokim module sztywności do warstw wyżej położonych w konstrukcji nawierzchni, tam gdzie występują najwyższe temperatury.

3.6.2. Przemieszczenia pionowe trwałe powierzchni jezdni

Największe przemieszczenia pionowe trwałe (powodowane lepkimi właściwościami mieszanek mineralno-asfaltowych) osiąga wariant B konstrukcji, w którym podbudowa asfaltowa wykonana jest z AC WMS, natomiast warstwa wiążąca z tradycyjnego betonu asfaltowego. Bardzo zbliżone wartości uzyskano dla wariantu A, w którym użyto jedynie tradycyjne betony asfaltowe.

Zbliżone wartości przemieszczeń trwałych pionowych uzyskano dla pozostałych dwóch wariantów (C i D), z których lepszy okazał się wariant C z warstwą wiążącą z AC WMS i warstwą podbudowy asfaltowej z tradycyjnego AC.

Potwierdza to wnioski, przedstawione w punkcie poprzednim, odnośnie przemieszczeń pionowych całkowitych. Beton asfaltowy o wysokim module sztywności (AC WMS) wykazuje zwiększoną odporność na deformacje trwałe w porównaniu z tradycyjnym AC w warunkach wysokich temperatur i powinien być stosowany w nawierzchni tam, gdzie te temperatury są najwyższe, czyli do warstwy wiążącej (AC WMS jest nieprzydatny jako materiał do warstwy ścieralnej).

Trwałe deformacje nawierzchni zależą od wartości współczynników lepkości η_1 [MPa.s] mieszanek mineralno-asfaltowych w warstwach konstrukcyjnych nawierzchni (zob. tablica 3.5). Im współczynnik ten ma większą wartość, tym warstwa asfaltowa jest bardziej odporna na deformacje trwałe. W analizowanych wariantach konstrukcji nawierzchni znacznie większym współczynnikiem lepkości η_1 charakteryzuje się warstwa wiążąca wykonana z betonu asfaltowego o wysokim module sztywności niż warstwa wiążąca wykonana z betonu asfaltowego tradycyjnego (współczynnik lepkości jest o ok. 90% większy). Powoduje to, że deformacje trwałe dla wariantu konstrukcji nawierzchni A są mniejsze niż dla wariantu C oraz deformacje trwałe dla

wariantu konstrukcji nawierzchni B są mniejsze niż dla wariantu D, w obu przypadkach o ponad 30%.

Współczynnik lepkości η_1 dla podbudowy z tradycyjnego AC jest niewiele większy od współczynnika lepkości dla podbudowy z AC WMS (o ok. 6%), co czyni deformacje trwałe nawierzchni wariantów A i B oraz C i D bardzo zbliżonymi do siebie i porównywalnymi (deformacje trwałe odpowiadających sobie wariantów nie różnią się o więcej jak 3%). Wskazywać może to na fakt, że do warstwy podbudowy asfaltowej lepiej stosować jest tradycyjny beton asfaltowy. Jednak z powodu niewielkich różnic we współczynnikach lepkości w analizowanych temperaturach oraz możliwego różnego rozkładu temperatury w nawierzchni w ciągu doby, aspekt ten wymaga dodatkowych badań i dalszej weryfikacji.

3.6.3. Porównanie przemieszczeń pionowych trwałych i całkowitych

Udział deformacji pionowych trwałych w deformacjach pionowych całkowitych jest tym mniejszy, im beton asfaltowy o wysokim module sztywności zastosowany zostanie do wyżej leżącej warstwy (warstwy, w której występują wyższe temperatury). Świadczy to o pozytywnym wpływie zastosowania AC WMS zarówno na odwracalne, jak i nieodwracalne przemieszczenia pionowe nawierzchni. W głównej mierze jednak zastosowanie tego materiału wpływa na przemieszczenia trwałe (nieodwracalne), czego rezultatem jest mniejszy ich udział procentowy w przemieszczeniach całkowitych dla wariantów C i D, niż dla wariantów A i B analizowanej konstrukcji nawierzchni.

3.6.4. Wnioski końcowe

Przeprowadzone analizy zachowania się konstrukcji nawierzchni w 4 wariantach:

- wariant A warstwa wiążąca i podbudowa asfaltowa wykonane z tradycyjnego betonu asfaltowego (AC),
- wariant B warstwa wiążąca z tradycyjnego betonu asfaltowego (AC) + podbudowa asfaltowa z betonu asfaltowego o wysokim module sztywności (AC WMS),
- wariant C warstwa wiążąca z betonu asfaltowego o wysokim module sztywności (AC WMS) + podbudowa asfaltowa z tradycyjnego betonu asfaltowego (AC),
- wariant D warstwa wiążąca i podbudowa asfaltowa z betonu asfaltowego o wysokim module sztywności (AC WMS),

w warunkach podwyższonych temperatur, pod kątem przemieszczeń pionowych wykazały, że:

(1) Zmiana temperatur w nawierzchni jest procesem złożonym i zależy od historii nagrzewania się i ochładzania nawierzchni. Nie zawsze jest tak, że powierzchnia jezdni ma najniższą lub najwyższą temperaturę z całego pakietu warstw asfaltowych. Ekstremum temperatury (minimum i maksimum), ze względu na różne tempo nagrzewania/oziębiania warstw niżej i wyżej leżących, położone może być na pewnej głębokości warstw asfaltowych.

- (2) Nawierzchnia asfaltowa będzie wykazywała inną odporność na deformacje trwałe w okresie rannym, a inną wieczorem, nawet jeśli temperatura powierzchni jezdni jest w obu przypadkach taka sama. Bardziej narażona na trwałe deformowanie się jest konstrukcja nawierzchni w godzinach popołudniowych i wieczornych (latem).
- (3) Beton asfaltowy AC WMS bardzo dobrze spisuje się w warunkach wysokich temperatur nawierzchni, lepiej niż tradycyjny beton asfaltowy AC i wykazuje w stosunku do niego zwiększoną odporność na deformacje trwałe.
- (4) Odporność na deformacje trwałe nawierzchni zwiększa się w sytuacjach, gdy beton asfaltowy o wysokim module sztywności (AC WMS) zostanie użyty do warstwy wiążącej, która nagrzewa się bardziej, niż do warstwy podbudowy asfaltowej nagrzewającej się w mniejszym stopniu.
- (5) Do warstwy podbudowy asfaltowej może być użyty tradycyjny beton asfaltowy. Obliczenia wykazały, że trwałe przemieszczenia pionowe są zbliżone dla konstrukcji nawierzchni z podbudową asfaltową wykonaną z betonu asfaltowego o wysokim module sztywności oraz konstrukcji z podbudową asfaltową z tradycyjnego betonu asfaltowego (przemieszczenia trwałe dla konstrukcji z warstwą wiążącą z AC WMS i podbudową asfaltową z AC stanowią 97,9% przemieszczenia trwałego dla analogicznej konstrukcji z podbudową asfaltową z AC WMS).

Obliczenia, których wyniki poddano analizie w tym rozdziale, wykonano dla temperatury powierzchni jezdni wynoszącej $T_0 = 40$ °C. Rozdział 4 pokazuje jednak, że temperatura ta w rzeczywistości może być wyższa, a przez to inny może być rozkład temperatur na grubości warstw asfaltowych. W sytuacji takiej, otrzymane wyniki analiz mogą być nieznacznie odmienne od zaprezentowanych. Dlatego w przyszłości planuje się przeprowadzenie uzupełniających badań laboratoryjnych oraz rozszerzenie analiz obliczeniowych pod kątem zachowania się nawierzchni, w których wykorzystano beton asfaltowy o wysokim module sztywności w warunkach podwyższonych temperatur.

LITERATURA

- [3.1] Judycki J., *Drogowe asfalty i mieszanki mineralno-asfaltowe modyfikowane elastomerem*, Zeszyty Naukowe Politechniki Gdańskiej, nr 452, Gdańsk 1991.
- [3.2] Judycki J., Dołżycki B., Pszczoła M., Jaczewski M., Mejłun Ł., Ryś D., Badanie wpływu zastosowania warstw betonu asfaltowego o wysokim module sztywności (AC-WMS) w konstrukcjach nawierzchni na spękania niskotemperaturowe i na zmniejszenie powstawania deformacji trwałych. Raport z drugiego etapu, Gdańsk 2012
- [3.3] Katalog typowych konstrukcji nawierzchni podatnych i półsztywnych, Gdańsk, 2012
- [3.4] VEROAD: "*User manual*", Version 2000 April. Appendix B: "Additional Theory", NPC bv, Utrecht, Netherlands 2000
- [3.5] Yoder E. J., Witczak M. W., *Principles of Pavement Design*, 2nd Edition, John Wiley & Son Inc., New York 1975

4. Badania i analizy obliczeniowe rozciągających naprężeń termicznych cz.2

4.1. Wstęp

Analizy przeprowadzone w roku 2013 są uzupełnieniem oraz rozwinięciem obliczeń prowadzonych w roku 2012. Zakończenie badań zginania trzypunktowego pod stałym obciążeniem oraz badań pośredniego rozciągania w niskich temperaturach pozwoliło ustalić parametry wykorzystywane w dwóch modelach predykcji przyrostu naprężeń termicznych pod wpływem oziębiania warstwy asfaltowej.

W niniejszym rozdziale przedstawiono:

- Wyznaczenie współczynnika liniowej rozszerzalności termicznej mieszanek mineralno-asfaltowych.
- Wyniki badania naprężeń termicznych według metody TSRST.
- Obliczenia naprężeń termicznych według metody Hillsa i Briena.
- Obliczenie napreżeń termicznych według metody opartej o teorie liniowej lepkosprężystości.
- Porównanie wyników obliczeń naprężeń termicznych z metody Hillsa i Briena oraz metody opartej o teorie liniowej lepkosprężystości.
- Porównanie wyników badań napreżeń termicznych z testu TSRST z wynikami obliczeń według metody Hillsa i Briena.

Porównanie wyników badań naprężeń termicznych z testu TSRST z wynikami obliczeń według metody opartej o teorię liniowej lepkosprężystości.

4.2. Współczynnik liniowej rozszerzalności termicznej

Współczynnik liniowej rozszerzalności termicznej jest parametrem, którv charakteryzuje zdolność materiału do zwiększania lub zmniejszania swojej objętości pod wpływem zmiany temperatury. Współczynnik ten nie jest stały dla całego zakresu temperatur. Występują przynajmniej dwa punkty (temperatury przejścia) w których następuje zmiana wartości współczynnika liniowej rozszerzalności termicznej.

Prace badawcze nad wyznaczeniem współczynników rozszerzalności termicznej. liniowej jak i postaciowej dla asfaltów oraz mieszanek mineralno-asfaltowych trwają od początku lat 60 tych XX wieku do czasów obecnych. Współczynniki liniowej rozszerzalności termicznej może być wyznaczony dokładnie w sposób laboratoryjny lub w sposób przybliżony na podstawie wzorów opartych o dane dotyczące mieszanki mineralno-asfaltowej oraz współczynniki kompozvcie liniowei rozszerzalności termicznej poszczególnych składników. Wzór ten podano za Jonesem [1]:

$$\alpha_{T} = \frac{V_{ac} \cdot \beta_{ac} + V_{agg} \cdot \beta_{agg}}{3 \cdot V_{mix}}$$
(4.1)

gdzie:

- współczynnik linowej rozszerzalności termicznej mieszanki mineralnoατ asfaltowej.
- współczynnik objętościowej rozszerzalności termicznej asfaltu, β_{ac}

- β_{agg} współczynnik objętościowej rozszerzalności termicznej kruszywa,
- V_{agg} objętość mieszanki mineralnej,
- V_{mix} objętość mieszanki mineralno-asfaltowej,
- V_{ac} objętość asfaltu.

Współczynniki liniowej rozszerzalności termicznej α_T obliczono w oparciu o wzór (4.1) oraz parametry objętościowe mieszanek mineralno-asfaltowych. W celu uproszczenia obliczeń przyjęto jeden współczynnik liniowej rozszerzalności termicznej dla asfaltu w całym zakresie temperatur wynoszący $\alpha_L = 1,72 \times 10^{-4}$ [1/°C] (według [2] oraz [3]) oraz średnie współczynniki liniowej rozszerzalności termicznej dla poszczególnych rodzajów kruszyw.

Wyniki przeprowadzonych obliczeń liniowych współczynników rozszerzalności termicznej α_T dla mieszanek wykonanych w laboratorium (zastosowano kruszywo granitowe α_L = 7,0×10⁻⁶ [1/°C] oraz wypełniacz wapienny α_L = 6,5×10⁻⁶ [1/°C]) przedstawiono w tablicy 4.1.

Rodzaj mieszanki	Kompozycja mieszanki mineralno-asfaltowej [%]			Liniowy współczynnik	
(miejsce wykonania)	V_{ac}	V_{agg}	V _{mix} = V _{ac} +V _{agg}	(×10 ⁻⁵ [1/°C])	
AC WMS 16W [20/30; 25/55-60; 20/30 multigrade] (laboratorium)	12,11	83,99	96,10	2,785	
AC 22P [35/50] (laboratorium)	9,74	85,46	95,20	2,393	
AC 16W [35/50] (laboratorium)	11,12	84,28	95,40	2,629	
AC 16W [50/70] (laboratorium)	11,09	84,10	95,20	2,629	

Tablica 4.1. Obliczone liniowe współczynniki rozszerzalności termicznej α_T

Współczynniki podane w tablicy 4.1 użyto w obliczeniach zawartych w punkcie 4.4.

4.3. Wynik badań TSRST

Badanie TSRST (ang. Tensile Stress Restrained Specimen Test) zostało przeprowadzone zgodnie z normą PN-EN 12697-46 "Mieszanki mineralno-asfaltowe – Metody badań mieszanek mineralno-asfaltowych na gorąco – Część 46: Pękanie nieskotemperaturowe i właściwości w badaniach osiowego rozciągania." [4] Procedura badania została szczegółowo opisana w niniejszym raporcie w punkcie 2.2.3.2. Podstawowymi parametrami badanych mieszanek mineralno-asfaltowych mierzonych w teście TSRST była:

- temperatura pęknięcia, w której próbka uległa zniszczeniu wskutek indukowanych termicznie naprężeń.
- wielkość naprężeń termicznych w momencie pęknięcia próbki.

Interpretacja uzyskanych wyników w teście TSRST jest następująca: badana próbka mieszanki mineralno-asfaltowej jest bardziej odporna na spękania niskotemperaturowe im niższą ma temperaturę wystąpienia spękania pod wpływem indukowanych naprężeń termicznych.

Zgodnie z normą PN-EN 12697-46 w teście TSRST badano po 3 próbki jednorodne. Na rysunkach od 4.1 do 4.5 przedstawiono zależności naprężeń termicznych od temperatury, otrzymane z badania TSRST dla poszczególnych mieszanek mineralnoasfaltowych oraz dla każdej z badanych próbek.

Rysunek 4.1. Zależność naprężenia termicznego od temperatury w teście TSRST dla mieszanki AC16W z asfaltem 35/50

Rysunek 4.2. Zależność naprężenia termicznego od temperatury w teście TSRST dla mieszanki AC16W z asfaltem 50/70

Rysunek 4.3. Zależność naprężenia termicznego od temperatury w teście TSRST dla mieszanki ACWMS16 z asfaltem 20/30

Rysunek 4.4. Zależność naprężenia termicznego od temperatury w teście TSRST dla mieszanki ACWMS16 z asfaltem modyfikowanym PMB25/55-60

Rysunek 4.5. Zależność naprężenia termicznego od temperatury w teście TSRST dla mieszanki ACWMS16 z asfaltem wielorodzajowym 20/30

W celu porównania zależności naprężenia termicznego od temperatury dla wszystkich badanych mieszanek mineralno-asfaltowych przedstawiono zestawienie średnich naprężeń z rozrzutami wartości najmniejszych i największych. Zestawienie to przedstawiono na rysunku 4.6.

Rysunek 4.6. Zależność naprężenia termicznego od temperatury dla wszystkich badanych mieszanek mineralno-asfaltowych

Najniższe wartości temperatury pęknięcia, a więc największą odporność na spękania niskotemperaturowe uzyskała mieszanka ACWMS16 z asfaltem 20/30 multigrade. Jednocześnie najwyższe wartości temperatury pęknięcia uzyskały mieszanki AC16W 35/50 oraz ACWMS16 20/30.

Porównanie uzyskanych wartości naprężeń termicznych w jednej temperaturze -20°C dla wszystkich badanych mieszanek mineralno-asfaltowych przedstawiono w tablicy 4.2.

Tablica 4.2. Porównanie uzyskanych wartości naprężeń termicznych w badaniu TSRST w temperaturze -20°C dla wszystkich badanych mieszanek mineralnoasfaltowych

Rodzaj mieszanki mineralno- asfaltowej	Oznaczenie próbki	Naprężenie termiczne w temperaturze -20°C [MPa]	Wartość średnia [MPa]	Odchylenie standardowe [MPa]	Współczynnik zmienności [%}	Wartość min [MPa]	Wartość max [MPa]
	986/1	2,821					
35/50	986/2	3,289	3,058	0,234	7,7	2,821	3,289
	986/3	3,063					
	1008/1	3,302					
20/30	1008/2	3,291	3,354	0,099	3,0	3,291	3,468
_0,00	1008/3	3,468					
0.040101	987/2	2,675					
50/70	987/4	2,612	2,609	0,068	2,6	2,540	2,675
00,10	987/5	2,54					
	1009/1	3,197					
25/55-60	1009/2	3,06	3,227	0,184	5,7	3,060	3,425
20,00 00	1009/5	3,425					
ACWMS16	1010/2	2,522					
20/30	1010/3	2,427	2,441	0,075	3,1	2,375	2,522
multigrade	1010/4	2,375					

Zestawienie uzyskanych wartości temperatury pęknięcia przedstawiono w tablicy 4.3.

Tablica 4.3. Uzyskane wartości temperatury pęknięcia analizowanych mieszanek mineralno-asfaltowych badanych metodą TSRST

Rodzaj mieszanki	Oznaczenie próbki	Temperatura pęknięcia [°C]	Wartość średnia [°C]	Odchylenie standardowe [°C]	Współczynnik zmienności [%]	Wartość min [°C]	Wartość max [°C]
101011	986/1	-20,4					
AC16W 35/50	986/2	-20,2	-20,5	0,42	2,03	-21,0	-20,2
00,00	986/3	-21,0					
	1008/1	-22,5					
6 20/30	1008/2	-21,1	-21,4	0,98	4,60	-22,5	-20,6
	1008/3	-20,6					
	987/2	-23,1	-22,5				
50/70	987/4	-22,2		0,52	2,31	-23,1	-22,2
	987/5	-22,2					
	1009/1	-25,8					
6 25/55-60	1009/2	-22,8	-24,7	1,65	6,69	-25,8	-22,8
0 20/00 00	1009/5	-25,5					
ACWMS1 6 20/30	1010/2	-27,9					
	1010/3	-33,0	-30,3	2,56	8,43	-33,0	-27,9
multigrade	1010/4	-30,1					

Zestawienie uzyskanych wartości naprężeń termicznych w temperaturze pęknięcia przedstawiono w tablicy 4.4.

Tablica 4.4. Uzyskane wartości naprężeń termicznych w temperaturze pęknięcia z badania metodą TSRST

Rodzaj	Oznaczenie	Naprężenie	Wartość	Odchylenie	Współczynnik	Wartość	Wartość
mieszanki	próbki	termiczne	średnia	standardowe	zmienności	min	max
		[MPa]	[MPa]	[MPa]	[%}	[MPa]	[MPa]
	986/1	2,893					
35/50	986/2	3,335	3,134	0,224	7,14	2,893	3,335
	986/3	3,173					
	1008/1	3,608					
6 20/30	1008/2	3,428	3,546	0,102	2,88	3,428	3,608
	1008/3	3,602					
A C 1 G M	987/2	3,230	3,160	0,061	1,92	3,124	3,23
50/70	987/4	3,124					
	987/5	3,126					
	1009/1	4,002					
6 25/55-60	1009/2	3,755	4,102	0,407	9,92	3,755	4,55
0 20/00 00	1009/5	4,550					
ACWMS1 6 20/30	1010/2	3,370			3,42	3,37	3,608
	1010/3	3,608	3,485	0,119			
multigrade	1010/4	3,476					

Porównanie średnich wartości temperatury pęknięcia i naprężeń przy pęknięciu dla analizowanych mieszanek mineralno-asfaltowych przedstawiono odpowiednio na rysunkach 4.7 i 4.8.

Rysunek 4.7. Temperatura pęknięcia dla analizowanych mieszanek mineralnoasfaltowych w badaniu TSRST

Rysunek 4.8. Naprężenie przy pęknięciu dla analizowanych mieszanek mineralnoasfaltowych w badaniu TSRST

Na podstawie przedstawionych wyników badań temperatury pęknięcia oraz naprężeń termicznych w teście TSRST można sformułować następujące wnioski:

• Najniższe wartości temperatury pęknięcia, a więc największą odporność na spękania niskotemperaturowe uzyskała mieszanka ACWMS16 z asfaltem

20/30 multigrade. Jednocześnie ta sama mieszanka uzyskała najniższe wartości naprężeń termicznych w temperaturze porównawczej -20°C.

- Najwyższe wartości temperatury pęknięcia, a więc gorszą odporność na spękania niskotemperaturowe uzyskały mieszanki: AC16W z asfaltem 35/50 oraz ACWMS16 z asfaltem 20/30. Jednocześnie mieszanka ACWMS16 20/30 uzyskała najwyższą wartość naprężenia termicznego w temperaturze porównawczej -20°C.
- Najszybszy wzrost naprężeń do temperatury -20°C stwierdzono dla mieszanki AC WMS16 20/30, a najwolniejszy dla AC WMS16 20/30 multigrade oraz AC 16W 50/70 (tablica 4.2)
- Biorąc pod uwagę wynik badań TSRST pięciu badanych mieszanek można uszeregować następująco od najwyższej do najniższej temperatury pęknięcia:
 - AC WMS16 20/30 multigrade
 - o AC WMS16 25/55-60
 - o AC 16W 50/70
 - o AC WMS16 20/30
 - AC 16W 35/50

4.4. Obliczenia naprężeń termicznych

4.4.1. Metodyka Hillsa i Briana

Metoda Hillsa i Briana jest uproszczoną metodą, opartą o rozwiązanie quasisprężyste, które nie uwzględnia relaksacji naprężeń. Obliczenia naprężeń termicznych metodą Hillsa i Briena przeprowadzono dla wszystkich mieszanek mineralno-asfaltowych, dla których określano wcześniej temperatury pęknięcia i naprężenia przy pęknięciu w badaniu TSRST (patrz punkt 4.3). Szczegółowy opis zastosowanej metody obliczeń naprężeń termicznych przedstawiono w Raporcie z roku 2012 [10].

Obliczenia naprężeń termicznych metodą Hillsa i Briena przeprowadzono według następującej zależności:

$$\sigma(T_i) = \alpha_T \sum_{i=1}^n S(t, T_i) \Delta T$$
(4.2)

gdzie:

- $\sigma(T)$ sumowane naprężenia termiczne dla określonej prędkości chłodzenia V_T, MPa,
- α_T współczynnik liniowej rozszerzalności termicznej, dla którego założono, że jest niezależny od zmian temperatury, ale zależny od rodzaju mieszanki 1/°C, według tablicy 4.1,
- $S(t,T_i)$ moduł sztywności zależny od czasu obciążenia *t* i temperatury T_i , MPa

 ΔT – wielkość przedziału temperatury; przyjęto do obliczeń ΔT =2°C,

i=1,2,3,..,n – kolejny przedział temperatury Ti.

Inne przyjęte założenia metody w obliczeniach przeprowadzonych w roku 2013:

- 1. W temperaturze powyżej +20°C warstwy są w stanie bez naprężeń termicznych.
- 2. Temperatura obniża się od +20°C w sposób liniowy w czasie.

- 3. Przyjęto 3 prędkości chłodzenia V_T:
 - wariant 1 prędkość chłodzenia V_T=3°C/h; jest to wariant najbardziej zbliżony do rzeczywistych warunków gwałtownego obniżania się temperatury w okresie mroźnej zimy,
 - wariant 2 prędkość chłodzenia V_T=5°C/h; jest to wariant pośredni pomiędzy warunkami zbliżonymi do rzeczywistych (wariant 1) i warunkami przyjętymi w metodzie TSRST (wariant 3),
 - <u>wariant 3</u> prędkość chłodzenia V_T=10°C/h; odpowiada to prędkości chłodzenia przyjętej w metodzie badawczej TSRST, a obliczone naprężenia termiczne mogą być porównane z naprężeniami uzyskanymi z metody TSRST.
- 4. Przyjęto wartości współczynnika rozszerzalności liniowej α_T analizowanych mieszanek mineralno-asfaltowych na podstawie tablicy 4.1.

Moduł sztywności betonu asfaltowego zależny jest od temperatury i czasu obciążenia. W analizie naprężeń termicznych w tym opracowaniu czas obciążenia wyznaczono ze wzoru:

$$t = \frac{\Delta T}{V_T} \tag{4.3}$$

gdzie:

 ΔT_i - jak w zależności (4.1) - wielkość przedziału temperatury, przyjęto w obliczeniach $\Delta T_i=2^{\circ}C$,

*V*_T - prędkość chłodzenia, °C/h.

Podany sposób przyjmowania czasu obciążenia t jest stosowany w innych opracowaniach [9]. Nie jest to jednak, co należy stwierdzić, sposób udokumentowany pod względem naukowym i technicznym.

Wyznaczony z zależności (4.2) czas obciążenia przedstawiono w tablicy 4.5.

Tablica 4.5. Wyznaczone wartości czasu obciążenia, dla ⊿T=2°C

Założona prędkość chłodzenia, V _T [°C/h]	Wyznaczona wartość czasu obciążenia, t [s]
3	2400
5	1440
10	720

Jak widać, przyjęty czas obciążenia w tej metodzie obliczeń zależy od obliczeniowego przedziału temperatury ΔT . W przypadku gdyby przyjąć ten przedział czasu obciążenia jako ΔT =4°C, to czas podany w tablicy 4.5 wzrósłby dwukrotnie. Jest to więc istotna wada tej metody obliczeń.

Moduły sztywności dla każdej analizowanej mieszanki mineralno-asfaltowej przyjęte zostały na podstawie badań laboratoryjnych krzywych pełzania uzyskanych przy zginaniu próbek ze stałą wartością obciążenia. Metodyka tych badań została szczegółowo opisana w raporcie z etapu III i zostanie tutaj pominięta. Temperatury badania pełzania próbek były następujące: 0°C, -10°C, -20°C.

Moduły sztywności S(t,T) wyznaczane były na podstawie następującej zależności

$$S_{(t,T)} = \frac{\sigma}{\varepsilon_{(t,T)}}$$
(4.4)

gdzie:

- $S_{(t,T)}$ moduł sztywności zależny od czasu obciążenia i temperatury, MPa
- σ naprężenie wyznaczane dla każdej próbki w teście zginania przy stałej wartości obciążenia, MPa
- $\epsilon_{(t,T)}$ odkształcenie próbki zginanej przy stałej wartości obciążenia w danej temperaturze T odczytane dla czasu obciążenia t według tablicy 4.5.

Wartości wyznaczonych modułów sztywności na podstawie badań laboratoryjnych metodą zginania przy stałej wartości obciążenia dla określonych czasów obciążenia i w danych temperaturach badania przedstawiono w tablicy 4.6.

Tablica 4.6. Wyznaczone wartości modułów sztywności betonu asfaltowego dla danych temperatur badania oraz dla czasów obciążenia t=2400s, t=1440s i t=720s

	Moduł sztywności na podstawie badań pełzania mma, MPa:						
Temperatura				ACWMS16	ACWMS16		
[°C]	35/50	50/70	20/20	PMB 25/55-	20/30		
	35/50	50/70	20/30	60	Multigrade		
Wariant 1 -	czas obciążen	ia t=2400s, wyzi	naczony dla pręd	dkości chłodzeni	a V _T =3⁰C/h		
0	808	919	1282	868	738		
-10	2746	2379	3222	2497	1732		
-20	3345	3713	5346	3178	3326		
Wariant 2 -	czas obciążen	ia t=1440s, wyzi	naczony dla pręd	dkości chłodzeni	a V _T =5°C/h		
0	924	1143	1363	1045	749		
-10	2852	2490	3360	2681	2102		
-20	3411	3811	5570	3245	3654		
Wariant 3 -	Wariant 3 - czas obciążenia t=720s, wyznaczony dla prędkości chłodzenia V _T =10°C/h						
0	1097	1465	1472	1317	1032		
-10	3045	2658	3518	2927	2522		
-20	3593	4048	5798	3424	4053		

Wartości modułów sztywności betonu asfaltowego w temperaturach od 0°C do -20°C wyznaczono poprzez interpolację, a dla T>0°C i dla T<-20°C wyznaczono poprzez ekstrapolację przy zastosowaniu funkcji matematycznej. Na podstawie przeprowadzonej analizy różnych funkcji przyjęto funkcję wykładniczą, dla której uzyskano najlepsze dopasowanie wartości modułów sztywności.

Przykład sposobu wyznaczania wartości modułów sztywności przedstawiono na rysunku 4.9.

Rysunek 4.9. Przykład sposobu wyznaczania modułów sztywności w zakresie temperatur od -30°C do +20°C – w przykładzie na wykresie mieszanka AC16W 35/50, prędkość chłodzenia V_T =3°C/h

W przedstawiony powyżej sposób wyznaczono wartości modułów sztywności dla każdej mieszanki mineralno-asfaltowej i dla każdej prędkości chłodzenia V_T (3, 5 oraz 10°C/h) w zakresie temperatury od +20°C do -30°C i z krokiem obliczeniowym co 2°C.

Do wyznaczenia modułów sztywności stosowano następujący wzór:

$$S = Ae^{-BT} \tag{4.5}$$

gdzie:

S - moduł sztywności, MPa,

- e podstawa logarytmu naturalnego,
- B stała doświadczalna, 1/°C,

T - temperatura, °C.

W tablicy 4.7 podano wartości stałych doświadczalnych A i B i współczynnik regresji R².

Rodzaj mieszanki	Prędkość chłodzenia V _T , °C/h	A [MPa] S (dla T=0°C)	B [1/°C]	R ²
	3	959,2	-0,071	0,85
AC16W35/50	5	1082,5	-0,065	0,85
	10	1265,1	-0,059	0,85
	3	1373,8	-0,071	0,97
20/30	5	1456,5	-0,07	0,97
20/30	10	1566,0	-0,069	0,98
	3	999,7	-0,07	0,96
AC16W 50/70	5	1212,6	-0,06	0,97
	10	1508,9	-0,051	0,99
	3	993,9	-0,065	0,88
DMB 25/55-60	5	1184,1	-0,057	0,87
FIND 25/55-00	10	1466,0	-0,048	0,87
ACWMS16	3	762,8	-0,075	0,99
20/30	5	811,0	-0,079	0,97
Multigrade	10	1106,3	-0,068	0,97

Wyznaczone wartości modułów sztywności przedstawiono w tablicach 4.8 – 4.10.

Tablica 4.8. Obliczone wartości modułów sztywności dla wariantu 1, prędkość chłodzenia $V_{\rm T}{=}3^{\rm o}{\rm C/h}$

	Obliczone moduły sztywności dla mma przy prędkości chłodzenia Vr=3°C/h. MPa					
Temperatura, [°C]	AC16W	AC16W	ACWMS16	ACWMS16 PMB 25/55-	ACWMS16 20/30	
	00,00	00/10	20/00	60	Multigrade	
20	231	246	332	270	170	
18	267	283	382	308	197	
16	308	326	441	351	229	
14	355	375	508	400	266	
12	409	431	586	455	310	
10	471	496	675	518	360	
8	543	571	778	590	418	
6	626	656	897	673	486	
4	722	755	1034	766	565	
2	832	869	1191	872	656	
0	959	999	1373	994	762	
-2	1105	1149	1583	1132	886	
-4	1274	1322	1825	1289	1029	
-6	1468	1521	2103	1468	1196	
-8	1692	1750	2424	1671	1389	
-10	1951	2013	2794	1904	1614	
-12	2248	2315	3220	2168	1876	
-14	2591	2663	3712	2469	2179	
-16	2987	3063	4278	2812	2532	
-18	3443	3524	4931	3202	2942	
-20	3968	4053	5683	3647	3418	
-22	4574	4663	6550	4153	3971	
-24	5271	5363	7550	4730	4614	
-26	6076	6169	8702	5386	5361	
-28	7003	7097	10030	6134	6229	
-30	8071	8163	11560	6986	7237	

Tablica 4.9. Obliczone wartości modułów sztywności dla wariantu 2, prędkość chłodzenia $V_{\rm T}{=}5^{\rm o}{\rm C/h}$

	Obliczone moduły sztywności dla mma przy prędkości chłodzenia				
Temperatura, [°C]	AC16W	AC16W	ACWMS16	ACWMS16	ACWMS16
	35/50	50/70	20/30	PIMB 25/55- 60	20/30 Multigrade
20	295	365	359	378	167
18	336	411	413	424	195
16	382	464	475	475	229
14	435	523	546	533	268
12	496	590	628	597	314
10	565	665	723	669	368
8	643	750	832	750	431
6	732	846	957	841	504
4	834	953	1100	942	591
2	950	1075	1266	1056	692
0	1082	1212	1456	1184	811
-2	1232	1367	1675	1327	949
-4	1403	1541	1927	1487	1112
-6	1598	1738	2216	1666	1302
-8	1820	1959	2549	1868	1525
-10	2073	2209	2933	2093	1787
-12	2361	2491	3373	2346	2092
-14	2689	2808	3880	2630	2451
-16	3062	3166	4464	2947	2870
-18	3487	3570	5134	3303	3362
-20	3972	4026	5906	3702	3937
-22	4523	4539	6794	4149	4611
-24	5151	5118	7814	4650	5400
-26	5866	5770	8989	5212	6325
-28	6681	6506	10340	5841	7408
-30	7608	7335	11894	6546	8676

	Obliczone n	aprężenia term	niczne dla mma	przy prędkośc	i chłodzenia	
Tomporatura	V _T =10°C/h, MPa					
				ACWMS16	ACWMS16	
[0]	35/50	50/70	20/30	PMB 25/55-	20/30	
	55/50	50/70	20/30	60	Multigrade	
20	388	544	394	561	283	
18	437	602	452	617	325	
16	492	667	519	680	372	
14	553	738	596	748	427	
12	623	818	684	824	489	
10	701	906	785	907	560	
8	789	1003	901	998	642	
6	887	1111	1035	1099	735	
4	999	1230	1188	1209	842	
2	1124	1362	1364	1331	965	
0	1265	1508	1566	1466	1106	
-2	1423	1670	1797	1613	1267	
-4	1601	1850	2063	1776	1452	
-6	1802	2049	2369	1955	1663	
-8	2028	2269	2719	2152	1906	
-10	2282	2512	3122	2369	2183	
-12	2568	2782	3584	2607	2501	
-14	2889	3081	4114	2870	2866	
-16	3251	3412	4723	3159	3283	
-18	3658	3778	5422	3478	3762	
-20	4117	4184	6224	3828	4310	
-22	4632	4633	7145	4214	4938	
-24	5213	5131	8203	4639	5657	
-26	5865	5682	9417	5106	6481	
-28	6600	6292	10810	5621	7426	
-30	7427	6968	12410	6187	8508	

Tablica 4.10. Obliczone wartości modułów sztywności dla wariantu 3, prędkość chłodzenia V_T =10°C/h

Obliczone wartości naprężeń termicznych według metody Hillsa i Briena dla prędkości chłodzenia: $V_T=3^{\circ}C/h$ przestawiono w tablicy 4.11, rys. 4.10, dla prędkości chłodzenia $V_T=5^{\circ}C/h$ przestawiono w tablicy 4.12, rys. 4.11 oraz dla prędkości chłodzenia $V_T=10^{\circ}C/h$ przestawiono w tablicy 4.13, rys. 4.13.

	Obliczone naprężenia termiczne dla mma przy prędkości chłodzenia V _T =3°C/h, MPa				
l'emperatura, [°C]	AC16W	AC16W	ACWMS16	ACWMS16 PMB 25/55-	ACWMS16 20/30
	33/30	30/70	20/30	60	Multigrade
20	0,012	0,013	0,019	0,015	0,010
18	0,026	0,028	0,040	0,032	0,021
16	0,042	0,045	0,064	0,052	0,033
14	0,061	0,065	0,093	0,074	0,048
12	0,083	0,088	0,125	0,100	0,066
10	0,108	0,114	0,163	0,129	0,086
8	0,136	0,144	0,207	0,161	0,109
6	0,169	0,178	0,257	0,199	0,136
4	0,207	0,218	0,314	0,242	0,168
2	0,251	0,264	0,381	0,290	0,204
0	0,301	0,316	0,457	0,346	0,247
-2	0,360	0,377	0,546	0,409	0,296
-4	0,427	0,447	0,647	0,481	0,354
-6	0,504	0,527	0,765	0,563	0,420
-8	0,593	0,619	0,900	0,656	0,498
-10	0,696	0,725	1,056	0,762	0,588
-12	0,814	0,847	1,235	0,883	0,692
-14	0,950	0,987	1,442	1,021	0,814
-16	1,108	1,148	1,681	1,177	0,955
-18	1,289	1,333	1,955	1,356	1,119
-20	1,498	1,547	2,272	1,559	1,310
-22	1,739	1,792	2,638	1,791	1,531
-24	2,016	2,075	3,059	2,055	1,788
-26	2,336	2,399	3,544	2,355	2,087
-28	2,704	2,773	4,103	2,697	2,435
-30	3,129	3,202	4,747	3,086	2,838

Tablica 4.11. Obliczone wartości naprężeń termicznych dla prędkości chłodzenia $V_{\rm T}{=}3^{\rm o}C/h$

Rysunek 4.10. Wpływ rodzaju asfaltu i typu mma na obliczone wartości naprężeń termicznych w metodzie Hillsa i Briena, przy $V_T=3^{\circ}C/h$

Tanana anatuma	Obliczone naprężenia termiczne dla mma przy prędkości chłodzenia V _T =5°C/h, MPa				
remperatura,	AC16W	AC16W/	ACWMS16	ACWMS16	ACWMS16
[0]	35/50	50/70	20/30	PMB 25/55-	20/30
	55/50	30/70	20/30	60	Multigrade
20	0,016	0,019	0,020	0,021	0,009
18	0,033	0,041	0,043	0,045	0,020
16	0,053	0,065	0,070	0,071	0,033
14	0,076	0,093	0,100	0,101	0,048
12	0,102	0,124	0,135	0,134	0,065
10	0,132	0,159	0,175	0,172	0,086
8	0,166	0,198	0,222	0,214	0,110
6	0,205	0,243	0,275	0,260	0,138
4	0,249	0,293	0,337	0,313	0,171
2	0,299	0,350	0,407	0,372	0,210
0	0,356	0,414	0,488	0,438	0,255
-2	0,420	0,486	0,582	0,512	0,308
-4	0,494	0,567	0,689	0,595	0,370
-6	0,578	0,658	0,813	0,688	0,443
-8	0,674	0,761	0,955	0,792	0,528
-10	0,783	0,878	1,118	0,909	0,627
-12	0,908	1,009	1,307	1,039	0,744
-14	1,049	1,157	1,523	1,186	0,881
-16	1,210	1,323	1,772	1,350	1,041
-18	1,394	1,511	2,058	1,535	1,228
-20	1,603	1,723	2,387	1,741	1,448
-22	1,841	1,962	2,766	1,972	1,705
-24	2,112	2,231	3,202	2,232	2,006
-26	2,421	2,535	3,703	2,522	2,359
-28	2,773	2,877	4,280	2,848	2,772
-30	3,173	3,264	4,943	3,213	3,255

Tablica 4.12. Obliczone wartości naprężeń termicznych dla prędkości chłodzenia $V_{\rm T}{=}5^{\rm o}C/h$

Rysunek 4.11. Wpływ rodzaju asfaltu i typu mma na obliczone wartości naprężeń termicznych w metodzie Hillsa i Briena, przy $V_T=5^{\circ}C/h$

Tablica 4.13. Obliczone wartości naprężeń termicznych dla prędkości chłodzenia V_T =10°C/h

	Obliczone naprężenia termiczne dla mma przy prędkości chłodzenia V _r =10°C/h MPa				
Temperatura, [°C]	AC16W	AC16W	ACWMS16	ACWMS16 PMB 25/55-	ACWMS16 20/30
	35/50	50/70	20/30	60	Multigrade
20	0,020	0,029	0,022	0,031	0,016
18	0,043	0,060	0,047	0,066	0,034
16	0,069	0,095	0,076	0,104	0,055
14	0,099	0,134	0,109	0,145	0,079
12	0,131	0,177	0,148	0,191	0,106
10	0,168	0,225	0,191	0,242	0,137
8	0,210	0,278	0,242	0,298	0,173
6	0,257	0,336	0,299	0,359	0,214
4	0,309	0,401	0,366	0,426	0,261
2	0,368	0,473	0,442	0,501	0,315
0	0,435	0,552	0,529	0,582	0,376
-2	0,510	0,640	0,629	0,672	0,447
-4	0,594	0,738	0,744	0,771	0,528
-6	0,689	0,845	0,876	0,880	0,621
-8	0,796	0,965	1,028	1,000	0,727
-10	0,916	1,097	1,202	1,132	0,849
-12	1,051	1,244	1,402	1,278	0,988
-14	1,203	1,406	1,631	1,438	1,148
-16	1,374	1,585	1,895	1,614	1,331
-18	1,567	1,784	2,197	1,808	1,541
-20	1,783	2,004	2,544	2,021	1,781
-22	2,027	2,248	2,942	2,256	2,057
-24	2,302	2,518	3,400	2,515	2,372
-26	2,610	2,817	3,925	2,800	2,733
-28	2,958	3,149	4,527	3,113	3,147
-30	3,349	3,515	5,219	3,458	3,622

Rysunek 4.12. Wpływ rodzaju asfaltu i typu mma na obliczone wartości naprężeń termicznych w metodzie Hillsa i Briena, przy $V_T=10^{\circ}C/h$

Tablica X.XX. Porównanie obliczonych naprężeń przy V_T=3°C/h dla temperatur -20°C oraz -25°C

Temperatura [ºC]	AC16W 35/50	AC16W 50/70	ACWMS16 20/30	ACWMS16 PMB 25/55-60	ACWMS16 20/30 Multigrade
-20	1,498	1,547	2,272	1,559	1,310
-25	2,336	2,399	3,594	2,355	2,087

Rysunek X.XX. Porównanie obliczonych naprężeń przy V_T=3°C/h dla temperatury - 20°C

Na rysunku 4.13 przedstawiono wpływ prędkości chłodzenia V_T na uzyskiwane wartości naprężeń termicznych na przykładzie mieszanki ACWMS16 z asfaltem 20/30.

Rysunek 4.13. Wpływ prędkości chłodzenia V_T na wartości naprężeń termicznych na przykładzie mieszanki ACWMS16 z asfaltem 20/30

Na podstawie przedstawionych wyników obliczeń naprężeń termicznych metodą Hillsa i Briena dla analizowanych mieszanek mineralno-asfaltowych można stwierdzić, że:

- Najwyższe wartości naprężeń termicznych uzyskano dla mieszanki AC WMS16 z asfaltem 20/30. Były to wartości istotnie wyższe od pozostałych analizowanych mieszanek.
- Pozostałe mieszanki wykazały podobny stopień przyrostu naprężeń termicznych dla każdej z 3 przyjętych prędkości chłodzenia V_T.
- Zwiększenie prędkości chłodzenia V_T w zakresie od 3°C/h do 10°C/h nie spowodowało istotnego zwiększenia obliczonych wartości naprężeń termicznych w przyjętej metodzie obliczeniowej. Jest to wada tej metody wynikająca z nieuwzględnienia relaksacji naprężeń.

4.4.2. Metodyka oparta o teorię liniowej lepkosprężystości

4.4.2.1. Konwersja funkcji pełzania na funkcję relaksacji

Duża ilość modeli predykcji spękań niskotemperaturowych opiera się na obliczeniach w oparciu o moduł relaksacji, który jest trudniejszy do zmierzenia niż moduł sztywności lub podatność pełzania uzyskiwane z typowych badań pełzania. Dlatego też w praktyce stosuje się często wzory pozwalające przeliczyć podatność pełzania na moduł relaksacji. W metodyce obliczeń naprężeń termicznych według norm amerykańskich [2] podawana jest metodyka według Hopkinsa i Hamminga [5].

Pierwszym krokiem w każdej z metod jest uzyskanie wartości krzywej wiodącej podatności pełzania z wartości krzywej wiodącej modułu sztywności wykorzystując wzór:

$$D(T_{ref},\xi) = \frac{1}{S(T_{ref},\xi)}$$
(4.6)

gdzie:

D(T_{ref},ξ) – wartość krzywej wiodącej podatności pełzania dla temperatury referencyjnej T_{ref} oraz czasu zredukowanego obciążenia ξ,

 $S(T_{ref},\xi)$ – wartość krzywej wiodącej modułu sztywności dla temperatury referencyjnej T_{ref} oraz czasu zredukowanego obciążenia ξ .

Dokładna zależność pomiędzy funkcją relaksacji $\psi(t)$ a funkcją pełzania $\phi(t)$, w zależności od czasu t, ma następującą postać:

$$\int_{0}^{t} \psi(t-\tau) \frac{\partial \varphi(\tau)}{\partial \tau} d\tau = 1$$
(4.7)

Ogólna zależność konwersji funkcji pełzania na funkcję relaksacji zacytowana przez Hopkinsa i Hamminga ma jedną z dwóch następujących ekwiwalentnych postaci:

$$\int_{0}^{t} \varphi(t-\tau) \psi(\tau) d\tau = t$$
(4.8)

$$\int_{0}^{t} \varphi(\tau) \psi(t-\tau) d\tau = t$$
(4.9)

gdzie:

 $\varphi(t)$ – funkcja pełzania dla czasu t,

 $\psi(t)$ – funkcja relaksacji dla czasu t.

Hopkins i Hamming zaproponowali rozwiązanie numeryczne równania (4.8) w następującej postaci:

$$\varphi\left(t_{n+\frac{1}{2}}\right) = \frac{t_{n+1} - \sum_{i=0}^{n-1} \varphi\left(t_{i+\frac{1}{2}}\right) \left[f\left(t_{n+1} - t_{i}\right) - f\left(t_{n+1} - t_{i+1}\right)\right]}{f\left(t_{n+1} - t_{n}\right)}$$
(4.10)

gdzie:

$$f(t_{n+1}) = f(t_n) + \frac{1}{2} [\psi(t_{n+1}) + \psi(t_n)] [t_{n+1} - t_n]$$
(4.11)

pozostałe oznaczenia jak poprzednio.

Funkcja (4.11) jest funkcją iteracyjną, gdzie w pierwszym kroku należy przyjąć

$$\varphi_{\frac{1}{2}} = \frac{t_1}{f(t_1)}.$$

Podane powyżej funkcje są używane przez normę amerykańską [2] po dostosowaniu do wykorzystywanych metod badawczych (urządzenia BBR) w następującej postaci:

$$E\left(t_{n+\frac{1}{2}}\right) = \frac{t_{n+1} - \sum_{i=0}^{n-1} E\left(t_{i+\frac{1}{2}}\right) \left[f\left(t_{n+1} - t_{i}\right) - f\left(t_{n+1} - t_{i+1}\right)\right]}{f\left(t_{n+1} - t_{n}\right)}$$
(4.12)

gdzie:

$$f(t_{n+1}) = f(t_n) + \frac{1}{2} [D(t_{n+1}) + D(t_n)][t_{n+1} - t_n]$$
(4.13)

E(t) – wartość krzywej wiodącej modułu relaksacji dla czasu obciążenia t,

D(t) – wartość krzywej wiodącej podatności pełzania dla czasu obciążenia t.

Funkcja (4.13) jest funkcją iteracyjną i należy ją obliczyć dla zakresu czasu obciążenia od t = 1×10^{-8} do t = 1×10^{7} sekund według [2] przyjmując po 4 punkty obliczeniowe na dekadę ($10^{0.0}$, $10^{0.25}$, $10^{0.5}$, $10^{0.75}$). Dodatkowo do obliczeń należy przyjąć [2]:

- Moduł w stanie szklistym odpowiadający danej mieszance mineralnoasfaltowej dla następujących wartości modułu sztywności i modułu relaksacji S(T_{ref}, 1×10⁻⁸s) = E(T_{ref}, 1×10⁻⁸s)
- Wartość pierwszego wyrazu funkcji f dla czasu t₀ należy przyjąć następująco f(t₀)=0.
- Interpolacje wartości do obliczeń należy interpolować funkcją sklejaną (ang. "cubic spline").

4.4.2.2. Model predykcji naprężeń termicznych

Model predykcji naprężeń termicznych według AASHTO PP42 opiera się na numerycznym rozwiązaniu równania podanego pzez Monismitha i wsp. [8], a wcześniej także przez Humpreysa-Martina [6]:

$$\sigma(t) = \int_{0}^{t} E(t - \xi) \frac{\partial \mathcal{E}(\xi)}{\partial \xi} d\xi \qquad (4.14)$$

gdzie:

E - moduł relaksacji,

 ξ - czas zredukowany.

Model numeryczny pierwotnie opracowany dla wyników badań uzyskanych z badania BBR i podany w AASHTO PP42 [2], został dostosowany w niniejszym opracowaniu do obliczeń naprężeń termicznych na podstawie wyników badania zginania pod stałym obciążeniem. W stosunku do metody pierwotnej zmieniono lub uzupełniono następujące elementy:

- Przyjęto metodę dopasowania krzywych wiodących CAM [7] do opisu mieszanek mineralno-asfaltowych poddanych zginaniu ze stałym obciążeniem (wydłużono czas badania do 2400/3600 sekund, stworzono procedurę półautomatycznego przesuwania krzywych pełzania).
- Zmieniono sposób wyznaczania współczynnika przesunięcia α (przyjęto współczynniki przesunięcia wyznaczane z przesuwania poszczególnych krzywych pełzania, opisane poprzez zmodyfikowany we fragmentach wzór Arrheniusa).
- Skrócono przedział temperatury, na którym wyznaczane są naprężenia termiczne do przedziału temperatury, w którym były przeprowadzane badania zginania pod stałym obciążeniem (ekstrapolację naprężeń termicznych wykonano na przedziale od -20°C do -30°C).
- Przyjęto liniowy współczynnik rozszerzalności termicznej obliczony dla poszczególnych rozpatrywanych mieszanek mineralno-asfaltowych.
- W obliczeniach pominięto stałą nawierzchni podany w AASHTO PP42 i wykorzystywaną do przeliczenia naprężeń termicznych uzyskanych dla badanych lepiszczy na naprężenia występujące w nawierzchni.

Metoda przyjęta w niniejszej pracy składa się z dwóch etapów: generacji naprężeń oraz relaksacji naprężeń. Do obliczeń naprężeń termicznych przyjmuje się następujące założenia:

 Temperatura początkowa
 Temperatura końcowa
 Przedział temperatury dla kroku obliczeniowego
 Współczynnik liniowej rozszerzalności termicznej
 Współczynnik liniowej nozszerzalności termicznej
 Czas przyjmowany na krok obliczeniowy
 O°C -30°C -30°C ΔT^N=0,2°C podany w tablicy 4.1 i zależny od rodzaju mieszanki zależny od prędkości

zależny od prędł oziębiania

W przedziale (0°C, -20°C) przyjmowane są dane z badań. W przedziale (-20°C, -30°C) przyjmowane są dane z przedłużenia krzywej pełzania.

Naprężenia sumaryczne wyznacza się dla każdego z przedziałów jako:

$$\sigma^{N} = \sigma_{str}^{N} + \sum_{t=1}^{N-1} \sigma_{rel}^{i,N}$$
(4.15)

gdzie:

σ^{N}	- sumaryczne naprężenia termiczne na końcu kroku N,
	, , , , , , , , , , , , , , , , , , , ,

 σ_{str}^{N} $\sigma_{rel}^{i,N}$

- naprężenia termiczne wygenerowane w kroku N,

 suma naprężeń termicznych z poprzednich kroków od 1 do N-1 z uwzględnieniem relaksacji naprężeń.

Naprężenia termiczne generowane dla poszczególnego kroku obliczeniowego wyznaczane są według wzoru:

$$\sigma_{str}^{N} = \overline{E}^{N} \cdot \varepsilon = \overline{E}^{N} \cdot \Delta T \cdot \alpha_{T}$$
(4.16)

gdzie:

$\sigma_{\rm str}$	 naprężenia termiczne wygenerowane w kroku N,
E ^N	- średni moduł relaksacji dla kroku N,
3	 odkształcenie na krok obliczeniowy,
ΔT	 przedział temperatury dla kroku obliczeniowego,
ατ	 współczynnik liniowej rozszerzalności termicznej.

Relaksacja naprężeń jest wyznaczana w oparciu o równanie:

$$\sigma(t) = \varepsilon E[\xi(t) - \tau]$$
(4.17)

gdzie:

- ε odkształcenie na krok obliczeniowy,
- E moduł relaksacji dla czasu $\xi(t)$ τ .

Obliczenie naprężeń termicznych w poszczególnym kroku N zostały przestawione w sposób graficzny na rysunku 4.14.

Rysunek 4.14. Graficzne przedstawienie generacji oraz relaksacji naprężeń w poszczególnych krokach obliczeniowych.

Naprężenia termiczne w oparciu o metodykę AASHTO PP42 wyznaczono dla każdej z rozpatrywanych mieszanek mineralno-asfaltowych dla następujących krzywych wiodących:

- krzywej uzyskanej bezpośrednio na podstawie wyników badań,
- dwóch krzywych (minimalnej oraz maksymalnej) utworzonych na podstawie średnich błędów dopasowania wyników badań poszczególnych próbek laboratoryjnych do krzywej wiodącej dopasowanej bezpośrednio do wyników badań.

Jako przykład, poszczególne krzywe przedstawiono na rysunku 4.15 dla mieszanki AC WMS16 20/30.

Rysunek 4.15. Przykładowa krzywa wiodąca modułu sztywności (dopasowanie CAM) w temperaturze referencyjnej 0°C dla mieszanki AC WMS16 20/30

Na rysunku 4.15 pokazano:

- punkty pochodzące z przesunięcia krzywych pełzania w temperaturach 0, -10 i -20°C do jednej krzywej wiodącej w temperaturze referencyjnej 0°C,
- krzywą wiodącą (dopasowanie CAM) w temperaturze referencyjnej 0°C linia ciągła czarna,
- krzywe wiodące wyznaczone na podstawie średniego błędu kwadratowego linie przerywane czerwone.

4.4.2.3. Wyniki obliczeń naprężeń termicznych

Na rysunkach od 4.16 do 4.21 dla poszczególnych mieszanek mineralno-asfaltowych przedstawiono:

- wynik obliczeń średnich naprężeń termicznych uzyskane dla danych z pomiarów do temperatury -20°C – linia gruba ciągła czarna,
- wynik obliczeń naprężeń termicznych do temperatury -20°C, z uwzględnieniem średniego błędu kwadratowego "+/-" – linie ciągłe czerwone
- ekstrapolacje obliczeń naprężeń termicznych do temperatury -30°C linie przerywane.

Obliczenia w przedziale od -20°C do -30°C są obarczone większym błędem niż w przedziale od 0°C do -20°C.

Obliczenia wykonano przy założeniach podanych w punkcie 4.4.2.2 przy dodatkowych założeniach:

- w temperaturze 0°C naprężenia termiczne są równe zeru,
- prędkość oziębiania wynosi 2°C.

Mieszanka AC 16 W 35/50

Rysunek 4.16. Naprężenia termiczne dla mieszanki AC 16 35/50 dla prędkości oziębiania 2°C/h

Mieszanka AC WMS16 20/30

Rysunek 4.17. Naprężenia termiczne dla mieszanki AC WMS16 20/30 dla prędkości oziębiania 2°C/h

Mieszanka AC 16W 50/70

Rysunek 4.18. Naprężenia termiczne dla mieszanki AC 16W 50/70 dla prędkości oziębiania 2°C/h

Rysunek 4.19. Naprężenia termiczne dla mieszanki AC WMS16 25/55-60 dla prędkości oziębiania 2°C/h

Mieszanka AC WMS16 20/30 multigrade

Rysunek 4.20. Naprężenia termiczne dla mieszanki AC WMS16 20/30 multigrade dla prędkości oziębiania 2°C/h

Rysunek 4.21. Średnie naprężenia termiczne dla wszystkich rozpatrywanych mieszanek mineralno-asfaltowych dla prędkości oziębiania 2°C/h

W oparciu o wyniki obliczeń naprężeń termicznych dokonane przy pomocy numerycznego rozwiązania równania liniowej lepkosprężystości można stwierdzić:

- 1. Najwyższe naprężenia termiczne uzyskano dla mieszanek AC WMS z asfaltami 20/30 i 20/30 multigrade.
- 2. Najniższe naprężenia uzyskano dla mieszanek porównawczych AC 16W oraz dla mieszanki AC WMS16 z asfaltem 25/55-60.
- Mieszanki wykazujące duże naprężenia termiczne wykazywały także bardzo małą relaksację naprężeń, szczególnie dotyczy to mieszanki AC WMS16 z asfaltem 20/30 multigrade (w której pomimo najniższego poziomu

generowanych w poszczególnych krokach naprężeń, mała relaksacja spowodowała duże całkowite naprężenia termiczne).

- Mieszanki wykazujące małe naprężenia termiczne wykazały bardzo dużą relaksację naprężeń. Szczególnie jest to widoczne dla mieszanek AC 16W 35/50 oraz AC WMS16 25/55-60.
- 5. Zastosowana metoda numeryczna dedykowana materiałom liniowo lepkosprężystym wymaga dalszego udoskonalenia, szczególnie w zakresie opisu krzywych wiodących oraz współczynników przesunięcia α_T.

4.5. Porównanie wyników obliczeń naprężeń termicznych z metody Hillsa i Briena oraz metody opartej o teorię liniowej lepkosprężystości przy prędkości oziębiania V_T = 10°C/h

Porównanie wartości naprężeń termicznych obliczonych metodą Hillsa i Briena oraz metodą opartą o teorię liniowej lepkosprężystości wykonano dla prędkości oziębiania V_T =10°C/h. Dla potrzeb niniejszego porównania, wartości naprężeń termicznych z metody Hillsa i Briena zostały obliczone w zakresie temperaturowym od 0°C do - 30°C, tak jak zostało to przyjęte w metodzie teorii liniowej lepkosprężystości. Dla obliczonych wartości naprężeń termicznych z obydwu metod wyznaczano odchylenie procentowe, które jest miarą błędu w dopasowaniu wyników obliczeń. Odchylenie procentowe obliczano według następującego wzoru:

$$\delta = \left| \frac{X_{H\&B} - X_{LL}}{X_{H\&B}} \right| \cdot 100\% \tag{4.18}$$

gdzie:

- δ procentowe odchylenie wartości naprężeń termicznych obliczonych z metody
 Hillsa i Briena oraz z metody opartej o teorię liniowej lepkosprężystości,
- X_{H&B} naprężenia termiczne obliczone metodą Hillsa i Briena,
- X_{LL} naprężenia termiczne obliczone metodą opartą o teorię liniowej lepkosprężystości.

Podano również średnie procentowe odchylenie wyników obliczeń dla zakresu temperatury od 0°C do -30°C.

Wyniki porównania wyników obliczeń naprężeń termicznych z obydwu metod obliczeniowych przedstawiono w tablicy 4.14.

Tablica 4.14. Wyniki porównania wyników obliczeń naprężeń termicznych z metody Hillsa i Briena (H&B) oraz z metody teorii liniowej lepkosprężystości (LL) przy prędkości oziębienia $V_T = 10^{\circ}C$

		Obliczone naprężenia termiczne dla mieszanek, MPa													
ura, °C	AC16W 35/50		ACWMS16 20/30		AC16W 50/70		ACWMS16 25/55-60			ACWMS16 20/30 Multigrade					
Temperat	H&B	ΓΓ	δ, %	H&B	H	δ, %	H&B	H	δ, %	H&B	H	δ, %	H&B	Γ	δ, %
0	0,00	0,02	-	0,00	0,02	-	0,00	0,02	-	0,00	0,02	-	0,00	0,02	-
-2	0,07	0,10	31	0,10	0,14	39	0,09	0,13	44	0,09	0,12	36	0,07	0,10	41
-4	0,16	0,17	8	0,22	0,24	11	0,19	0,21	12	0,19	0,21	9	0,15	0,17	15
-6	0,25	0,26	0	0,35	0,35	1	0,29	0,29	1	0,30	0,30	1	0,24	0,26	5
-8	0,36	0,35	3	0,50	0,47	5	0,41	0,38	9	0,42	0,40	5	0,35	0,35	1
-10	0,48	0,47	3	0,67	0,62	8	0,54	0,47	14	0,55	0,51	8	0,47	0,46	3
-12	0,62	0,58	6	0,87	0,77	11	0,69	0,57	17	0,70	0,62	11	0,61	0,58	5
-14	0,77	0,69	10	1,10	0,94	15	0,85	0,68	20	0,86	0,73	15	0,77	0,72	7
-16	0,94	0,81	14	1,37	1,13	17	1,03	0,80	22	1,03	0,84	19	0,95	0,88	8
-18	1,13	0,92	19	1,67	1,33	20	1,23	0,94	24	1,23	0,95	22	1,16	1,06	9
-20	1,35	1,03	23	2,01	1,56	23	1,45	1,09	25	1,44	1,07	26	1,40	1,26	10
-22	1,59	1,15	28	2,41	1,81	25	1,70	1,25	26	1,67	1,19	29	1,68	1,50	11
-24	1,87	1,27	32	2,87	2,09	27	1,97	1,43	27	1,93	1,31	32	2,00	1,76	12
-26	2,18	1,40	36	3,40	2,40	29	2,27	1,62	28	2,22	1,44	35	2,36	2,06	13
-28	2,52	1,52	40	4,00	2,74	31	2,60	1,84	29	2,53	1,57	38	2,77	2,40	13
-30	2,91	1,65	43	4,69	3,12	33	2,96	2,07	30	2,88	1,70	41	3,25	2,78	14

Porównanie obliczonych naprężeń termicznych z metody Hillsa i Briena oraz z metody teorii liniowej lepkosprężystości przedstawiono również na rysunkach od 4.22 do 4.26.

Rysunek 4.22. Porównanie naprężeń termicznych obliczonych metodą Hillsa i Briena oraz metodą teorii liniowej lepkosprężystości dla mieszanki AC16W z asfaltem 35/50 przy prędkości oziębienia $V_T = 10^{\circ}C$

Rysunek 4.23. Porównanie naprężeń termicznych obliczonych metodą Hillsa i Briena oraz metodą teorii liniowej lepkosprężystości dla mieszanki ACWMS16 z asfaltem 20/30 przy prędkości oziębienia $V_T = 10^{\circ}C$

Rysunek 4.24. Porównanie naprężeń termicznych obliczonych metodą Hillsa i Briena oraz metodą teorii liniowej lepkosprężystości dla mieszanki AC16W z asfaltem 50/70 przy prędkości oziębienia $V_T = 10^{\circ}C$

Rysunek 4.25. Porównanie naprężeń termicznych obliczonych metodą Hillsa i Briena oraz metodą teorii liniowej lepkosprężystości dla mieszanki ACWMS16 z asfaltem PMB25/55-60 przy prędkości oziębienia $V_T = 10^{\circ}C$

Rysunek 4.26. Porównanie naprężeń termicznych obliczonych metodą Hillsa i Briena oraz metodą teorii liniowej lepkosprężystości dla mieszanki ACWMS16 z asfaltem 20/30 Multigrade przy prędkości oziębienia $V_T = 10^{\circ}C$

Na podstawie przeprowadzonego porównania wyników obliczeń naprężeń termicznych wykonanych zgodnie z metodą Hillsa i Briena oraz metodą teorii liniowej lepkosprężystości można sformułować następujące wnioski:

 Najmniejsze różnice pomiędzy obliczonymi wartościami naprężeń termicznych wystąpiły dla mieszanki ACWMS16 z asfaltem 20/30 Multigrade. Wyznaczone wartości odchylenia procentowego wyników obliczeń wahały się od 10 do 15% dla większości przedziałów temperaturowych. Jedynie w przypadku przedziału temperatury -2°C odchylenie procentowe uzyskało wartość 41%.

- W przypadku pozostałych analizowanych mieszanek uzyskane różnice w wynikach obliczeń pomiędzy metodą Hillsa i Briena oraz metodą teorii liniowej lepkosprężystości okazały się zbliżone. Średnia wartość odchylenia procentowego dla pozostałych mieszanek wyniosła 20% (mieszanki: AC16W 35/50 oraz ACWMS16 20/30) oraz 22% (mieszanki AC16W 50/70 oraz ACWMS16 PMB25/55-60). Różnice w kształcie krzywej naprężeń oraz w wynikach obliczeń są najmniejsze w przypadku mieszanek, które wykazują liniowy (lub zbliżony do liniowego) charakter zależności współczynnika przesunięcia α_{T} od temperatury.
- Największe różnice pomiędzy obliczonymi wartościami naprężeń termicznych występują dla przedziału temperatury od -20°C do -30°C. Jest to przedział gdzie ekstrapolowano dla obu metod wartości modułów sztywności lub relaksacji (w zależności od metody).
- W przypadku metody teorii liniowej lepkosprężystości, w przedziale temperatury od -20°C do -30°C zaniżone ekstrapolowane wartości współczynników przesunięcia α_T mogły powodować zawyżoną relaksację naprężeń.

4.6. Porównanie wyników badań naprężeń termicznych z testu TSRST z wynikami obliczeń według metody Hillsa i Briena

Porównanie wartości naprężeń termicznych obliczonych według metody Hillsa i Briena oraz zbadanych w teście laboratoryjnym TSRST wykonano w podobny sposób, jak to zostało przedstawione w punkcie 4.5 dla metod obliczeniowych Hillsa i Briena oraz metody teorii liniowej lepkosprężystości. Porównanie wartości naprężeń termicznych wykonano dla prędkości chodzenia V_T=10°C/h oraz dla zakresu temperatury od +20°C do -20°C. Dla obliczonych wartości naprężeń termicznych z obydwu metod wyznaczano odchylenie procentowe według wzoru (4.18).

Podano również średnie procentowe odchylenie wyników obliczeń i badań laboratoryjnych dla zakresu temperatury od -4°C do -20°C.

Wyniki porównania metody obliczeń naprężeń termicznych oraz metody badań TSRST przedstawiono w tablicy 4.15. Odchylenia pomiędzy naprężeniami obliczonymi i pomierzonymi są rzędu 34-52%, a maksymalnie dochodzą do 79%. W każdym przypadku naprężenia zmierzone w teście TSRST są większe od obliczonych według metody Hillsa i Briana.

Temperatura,		(Oblic	zone i z	zmierz	one r	napręże	enia te	rmicz	ne dla	miesz	anek	, MPa		
°C	AC16W 35/50			ACWMS16 20/30		AC16W 50/70			ACWMS16 25/55-60			ACWMS16 20/30 Multigrade		6 e	
	H&B	TSRST	δ, %	H&B	TSRST	δ, %	H&B	TSRST	δ, %	H&B	TSRST	δ, %	H&B	TSRST	δ, %
20	0,02	0,01	-	0,02	0,01	-	0,03	0,01	-	0,03	0,00	-	0,02	0,00	-
18	0,04	0,00	-	0,05	0,01	-	0,06	0,00	-	0,07	0,01	-	0,03	0,03	-
16	0,07	0,01	-	0,08	0,03	-	0,10	0,00	-	0,10	0,02	-	0,06	0,06	-
14	0,10	0,03	-	0,11	0,05	-	0,13	0,01	-	0,15	0,03	-	0,08	0,09	-
12	0,13	0,05	-	0,15	0,08	-	0,18	0,02	-	0,19	0,05	-	0,11	0,13	-
10	0,17	0,08	-	0,19	0,13	-	0,23	0,03	-	0,24	0,08	-	0,14	0,18	-
8	0,21	0,12	-	0,24	0,18	-	0,28	0,05	-	0,30	0,12	-	0,17	0,23	-
6	0,26	0,17	-	0,30	0,25	-	0,34	0,07	-	0,36	0,16	-	0,21	0,28	-
4	0,31	0,24	-	0,37	0,34	-	0,40	0,10	-	0,43	0,23	-	0,26	0,37	-
2	0,37	0,33	-	0,44	0,46	-	0,47	0,16	-	0,50	0,31	-	0,32	0,44	-
0	0,44	0,45	-	0,53	0,59	-	0,55	0,22	-	0,58	0,42	-	0,38	0,53	-
-2	0,51	0,59	-	0,63	0,76	-	0,64	0,29	-	0,67	0,55	-	0,45	0,62	-
-4	0,59	0,77	-	0,74	0,97	-	0,74	0,40	-	0,77	0,71	-	0,53	0,79	-
-6	0,69	0,96	40	0,88	1,19	36	0,85	0,55	35	0,88	0,90	3	0,62	0,95	53
-8	0,80	1,22	53	1,03	1,45	41	0,97	0,75	22	1,00	1,16	16	0,73	1,09	50
-10	0,92	1,48	61	1,20	1,74	45	1,10	0,96	13	1,13	1,44	27	0,85	1,30	53
-12	1,05	1,78	69	1,40	2,04	46	1,24	1,22	2	1,28	1,73	35	0,99	1,43	45
-14	1.20	2.12	76	1.63	2.40	47	1.41	1.51	7	1.44	2.02	41	1.15	1.76	53

Tablica 4.15. Wyniki porównania naprężeń termicznych obliczonych według metody Hillsa i Briena oraz zbadanych w teście laboratoryjnym TSRST

Porównywanie wartości naprężeń termicznych analizowanych mieszanek mineralnoasfaltowych obliczonych według metody Hillsa i Briena dla przy prędkości chłodzenia V_T =10°C/h oraz uzyskanych z badań laboratoryjnych metodą TSRST, także przy prędkości chłodzenia V_T =10°C/h, przedstawiono na rysunkach od 4.27 do 4.31.

1,59

1,78

2,00

1,86

2,24

2,62

17

26

31

1,61

1,81

2,02

2,44

2,82

3,23

51

56

60

1,33

1,54

1,78

1,95

2,25

2,52

46

46

42

-16

-18

-20

1,37

1,57

1,78

2,46

2,77

3,06

79

77

71

1,90

2,20

2,54

2,72

3,05

3,35

43

39

32

Rysunek 4.27. Porównywanie naprężeń termicznych obliczonych metodą Hillsa i Briena i uzyskanych z badań laboratoryjnych metodą TSRST dla betonu asfaltowego AC16W z asfaltem zwykłym 35/50

Rysunek 4.28. Porównywanie naprężeń termicznych obliczonych metodą Hillsa i Briena i uzyskanych z badań laboratoryjnych metodą TSRST dla betonu asfaltowego o wysokim module sztywności AC16WMS z asfaltem zwykłym 20/30

Rysunek 4.29. Porównywanie naprężeń termicznych obliczonych metodą Hillsa i Briena i uzyskanych z badań laboratoryjnych metodą TSRST dla betonu asfaltowego AC16W z asfaltem zwykłym 50/70

Rysunek 4.30. Porównywanie naprężeń termicznych obliczonych metodą Hillsa i Briena i uzyskanych z badań laboratoryjnych metodą TSRST dla betonu asfaltowego AC16WMS z asfaltem modyfikowanym 25/55-60

Rysunek 4.31. Porównywanie naprężeń termicznych obliczonych metodą Hillsa i Briena i uzyskanych z badań laboratoryjnych metodą TSRST dla betonu asfaltowego AC16WMS z asfaltem 20/30 Multigrade

Na podstawie przeprowadzonego porównania wyników obliczeń naprężeń termicznych wykonanych zgodnie z metodą Hillsa i Briena oraz naprężeń termicznych uzyskanych z badania TSRST można sformułować następujące wnioski:

- Metoda Hillsa i Briana dała w analizowanym przypadku wartości różne od pomiarów w aparacie TSRST.
- Najmniejsze różnice pomiędzy obliczonymi wartościami naprężeń termicznych wystąpiły dla mieszanki AC 16W z asfaltem 50/70. Wyznaczone wartości odchylenia procentowego wyników obliczeń dochodziły w tym przypadku do około 31%.
- W przypadku pozostałych analizowanych mieszanek uzyskane różnice w wynikach naprężeń termicznych pomiędzy metodą Hillsa i Briena oraz metodą TSRST okazały się wyższe osiągając poziom maksymalnego odchylenia procentowego od 32 do 72%.

4.7. Bibliografia do rozdziału 4

- Jones G. M., Darter M. I., Littlefield G., Thermal Expansion-Contraction of Asphaltic Concrete, Proceedings, Association of Asphalt Paving Technologists, vol. 37, 1968
- [2] AASHTO PP42-02 Standard Practice for Determination of Low-Temperature Performance Grade (PG) of Asphalt Binders, 2006 AASHTO Provisional Standards, American Association of State Highway and Transportation Officials
- [3] Marasteanu M. O. i wsp., Investigation of Low Temperature Cracking in Asphalt Pavements, National Pooled Fund Study 776, MN/RC 2007-43, October 2007
- [4] PN-EN 12697-46 Mieszanki mineralno-asfaltowe Metody badań mieszanek mineralno-asfaltowych na gorąco – Część 46: Pękanie niskotemperaturowe i właściwości w badaniach osiowego rozciągania

- [5] Hopkins I. L., Hamming R.W., On Creep and Relaxation, Journal of Applied Physics, Vol 28, nr 8, 1957
- [6] Humphreys J.S., Martin C.J., Determination of Transient Thermal Stresses in a Slab with Temperature-Dependent Viscoelastic Properties, Transactions of the Society of Rheology, Vol. VII, 155-170, 1963
- [7] Marasteanu M. O., Anderson D.A., Improved Model for Bitumens Rheological Characterization, Eurobitume Workshop on Performance-Related Properties for Bituminous Binders, Paper No. 133, Luxembourg, May 1999
- [8] Monismith C., Secor G., Secor K., Temperature induced stresses and deformations in asphalt concrete, AAPT, vol. 34, 248-285, 1965
- [9] Pszczoła M., Spękania niskotemperaturowe warstw asfaltowych nawierzchni, Rozprawa doktorska, Politechnika Gdańska, 2006
- [10] Judycki J., Dołżycki B., Pszczoła M., Jaczewski M., Mejłun Ł., Ryś D., Badanie wpływu zastosowania warstw betonu asfaltowego o wysokim module sztywności (AC-WMS) w konstrukcjach nawierzchni na spękania niskotemperaturowe i na zmniejszenie powstawania deformacji trwałych. Raport z drugiego etapu, Gdańsk 2012

5. Analiza pomiarów temperatury w nawierzchniach bitumicznych

W ramach prac wchodzących w zakres niniejszego raportu przeprowadzono następujące etapy analizy pomiarów temperatury w nawierzchni:

- Zebrano dane pomiarowe ze stacji meteorologicznych, które między innymi zawierają wyniki pomiarów temperatury powietrza i nawierzchni.
- Zweryfikowano dane wejściowe, odrzucono błędne zapisy.
- Dla pełnego dostępnego okresu pomiaru wyznaczono
 - o minimalne i maksymalne temperatury w nawierzchni,
 - o czas utrzymywania się niskich i wysokich temperatur nawierzchni,
 - o tempo ochładzania się nawierzchni,
- Dla wybranego, jednego roku pomiarowego (okres od 10.9.2012 do 11.9.2013) wyznaczono liczbę przejść temperatury nawierzchni w roku przez określony poziom niskich temperatur (0°C, -5°C, -10°C, -15°C, -20°C) oraz przez określony poziom wysokich temperatur (40°C, 45°C, 50°C, 55°C),

5.1. Dane pomiarowe

Dane, na podstawie których przeprowadzono analizę, pochodzą z pomiarów temperatury nawierzchni na stacjach meteorologicznych zlokalizowanych przy drogach w różnych rejonach Polski. Dane zostały udostępnione przez GDDKiA. W tablicy 5.1 zestawiono wszystkie punkty pomiarowe uwzględnione w analizie a na rysunku 5.1 zamieszczono mapkę z lokalizacją punktów pomiarowych. Dla podanych punktów dostępny jest pomiar temperatury powietrza 20 cm nad nawierzchnią, temperatura nawierzchni mierzona na powierzchni (0 cm) oraz na głębokościach 5 cm i 30 cm w konstrukcji nawierzchni. Inne dane meteorologiczne, takie jak wilgotność, opady, prędkość i kierunek wiatru mimo, że są podane w danych pomiarowych to nie zostały wykorzystane do dalszych analiz. Łącznie do obliczeń wykorzystano 3,3 mln zapisów z pomiaru temperatury nawierzchni. Pomiary na stacjach zapisywane były co 10 min. Do dalszych analiz przyjmowano obliczane średnie pomiary przypadające na każdą godzinę.

Dostarczone dane pomiarowe muszą być zweryfikowane ze względu na możliwość pojawienia się błędnych odczytów. Weryfikację danych przeprowadzono według następujących kryteriów:

- 1. odczyty zostały wykonane na wszystkich termometrach w nawierzchni i na termometrze w powietrzu,
- 2. pomiar musiał zawierać komplet odczytów z całej doby.

Jeżeli dane określone dla danego dnia nie spełniały powyższych kryteriów to wszystkie dane z tego dnia były odrzucane. Liczbę dni miarodajnych, spełniających kryteria selekcji danych, podano w tablicy 5.1.

Tablica 5.1. Zestawienie stacji meteorologicznych, analizowanego okresu pomiaru oraz liczby miarodajnych dni pomiarowych

Lp.	Droga	Województwo	Miejscowość	Głębokość przemarzania gruntu (wg PN-81-B- 03020) [m]	Okres	oomiaru	Liczba dni miaro- dajnych	
1.	DK1	Kujawsko- Pomorskie	Probostwo	1	2011-04-05	2013-09-11	834	
2.	DK10	Kujawsko- Pomorskie	Kruszyniec	0,8	2011-01-01	2013-09-11	950	
3.	DK10	Zachodnio- Pomorskie	Człopa	0,8	2013-05-14	2013-09-11	107	
4.	DK15	Kujawsko- Pomorskie	Żabieńko	0,8	2011-10-08	2013-09-11	486	
5.	DK3	Dolnośląskie	Radomierz	0,8	2010-12-14	2013-09-11	930	
6.	DK45	Opolskie	Zawada	0,8	2004-04-30	2013-09-11	2948	
7.	DK50	Mazowieckie	Brok	1,0	2012-01-01	2013-09-11	554	
8.	DK59	Mazowieckie	Myszyniec Stary	1,0	2008-07-15	2013-09-10	1762	
9.	DK7	Mazowieckie	Pepłowo	1,0	2004-01-30	2013-09-11	2879	
10.	DK8	Mazowieckie	Podborze	1,0	2003-03-26	2013-09-11	3327	
11.	DW426	Opolskie	Zalesie Śląskie	0,8	2003-03-27	2013-09-11	3289	
12.	DK25	Kujawsko- Pomorskie	Koronowo	1,0	2011-09-02	2013-09-11	659	
13.	S10	Kujawsko- Pomorskie	Lipniki	1,0	2010-12-11	2013-09-11	946	
14.	S10	Kujawsko- Pomorskie	Zielonka	1,0	2010-12-11	2013-09-11	966	
15.	S6	Pomorskie	Kobylnica	0,8	2010-10-26	2013-09-11	1030	
16.	S8	Podlaskie	Choroszcz	1,2	2012-09-12	2013-09-11	332	
17.	S8	Podlaskie	Jeżewo	1,2	2012-12-01	2013-09-11	221	
18.	S8	Podlaskie	Żółtki	1,2	2012-09-12	2013-09-11	346	
SUMA								

Rysunek 5.1. Mapa lokalizacji stacji pomiarowych (na podstawie mapki firmy Trax Elektronik, obsługującej stacje meteorologiczne)

Dalsze analizy przeprowadzono na zbiorze wszystkich dostępnych, miarodajnych pomiarów. Należy zwrócić uwagę na fakt, że okres pomiaru różni się na poszczególnych stacjach i wynosi od kilku miesięcy do dziewięciu lat. Do niektórych analiz ograniczono zakres dostępnych danych do okresu jednego roku. Na tym etapie prac nie porównywano ze sobą wyników otrzymanych na różnych stacjach meteorologicznych. Porównanie wyników otrzymanych na różnych stacjach planowane jest w kolejnym etapie prac, uwzględniając większy zakres danych.

5.2. Minimalne i maksymalne temperatury nawierzchni

Na każdym z rozpatrywanych punktów pomiarowych określono maksymalne i minimalne wartości temperatury nawierzchni. Celem tej części analiz było poznanie ekstremalnych temperatur na podstawie pomiarów, dlatego też rozpatrywano pełen dostępny okres danych na każdej ze stacji. Stwierdzono, że ekstrema występują zawsze na powierzchni nawierzchni (głębokość 0 cm). W tablicy 5.2 zestawiono minimalne odnotowane temperatury nawierzchni dla poszczególnych punktów pomiarowych. Najniższą temperaturę nawierzchni -24,2°C odnotowano 26 stycznia 2010 roku na stacji DK8 Podborze (w północno-wschodniej części woj. Mazowieckiego).

Stacja	Województwo	D	Data		Godzina	Temperatura nawierzchni (minimum)
DK1 Probostwo	Kujawsko-Pomorskie	2012	2	4	7	-17,6
DK10 Człopa	Zachodnio-Pomorskie	2012	2	6	4	-17,2
DK10 Kruszyniec	Kujawsko-Pomorskie	2013	3	23	5	-11,9
DK15 Żabieńko	Kujawsko-Pomorskie	2012	2	3	5	-15,1
DK25 Koronowo	Kujawsko-Pomorskie	2012	2	6	2	-18,9
DK45 Zawada	Opolskie	2012	2	4	7	-19,3
DK50 Brok	Mazowieckie	2012	2	3	6	-21,3
DK59 Myszyniec Stary	Mazowieckie	2010	1	26	7	-21,8
DK7 Pepłowo	Mazowieckie	2012	2	3	7	-20,9
DK8 Podborze	Mazowieckie	2010	1	26	7	-24,2
DW426 Zalesie Śląskie	Opolskie	2012	2	4	7	-18,0
S10 Lipniki	Kujawsko-Pomorskie	2012	2	11	7	-18,5
S10 Zielonka	Kujawsko-Pomorskie	2012	2	11	7	-19,8
S6 Kobylnica	Pomorskie	2012	2	6	7	-24,1
S8 Choroszcz	Podlaskie	2012	12	23	7	-16,2
S8 Jeżewo	Podlaskie	2013	1	26	5	-19,7
S8 Żółtki	Podlaskie	2012	12	23	7	-16,4

Tablica 5.2 Najniższe odnotowane temperatury nawierzchni

Na rysunku 5.2 przedstawiono rozkłady temperatury na głębokości konstrukcji nawierzchni. Na wykresie zamieszczono rozkłady z czterech stacji z najniższymi zaobserwowanymi temperaturami nawierzchni w godzinie osiągnięcia minimalnej temperatury. Warto zwrócić uwagę na fakt, że temperatura na głębokości -5 cm wzrasta o około 2-4°C natomiast na głębokości - 30 cm wzrasta już o około 20°C.

Rysunek 5.2. Rozkłady temperatury w nawierzchni w przypadku czterech najniższych odnotowanych temperatur

Na rysunku 5.3 przedstawiono przebieg zmian temperatury na stacji DK8 Podborze w woj. Mazowieckim w okresie bezpośrednio przed i po osiągnięciu minimalnej temperatury nawierzchni. Na wykresie widoczne są dobowe wahania temperatury oraz kilkudniowy okres ochładzania się nawierzchni i później jej ogrzewania. Warto również zwrócić uwagę na brak dobowych wahań temperatury na głębokości -30 cm, oraz powolne obniżanie się temperatury na tej głębokości, wynikające z kilkudniowego utrzymywania się bardzo niskich temperatur (okres od 23 do 26 stycznia) i następnie powolne, kilkudniowe ogrzewanie się nawierzchni na tej głębokości.

Rysunek 5.3. Wykres godzinowych zmian temperatury nawierzchni na stacji DK8 Podborze w okresie między 19 stycznia a 1 lutego 2010 r..

W sposób analogiczny przeprowadzono analizę maksymalnych temperatur nawierzchni. W tablicy 5.3 zestawiono temperatury maksymalne odnotowane w rozpatrywanym okresie pomiarowym na poszczególnych stacjach. Maksymalną temperaturę zaobserwowano na stacji DK426 Zalesie Śląskie (59,9°C) w dniu 28 lipca 2013r.

Stacja pomiarowa	Województwo	Data	Godzina	Temperatura nawierzchni (maksimum)
DK1 Probostwo	Kujawsko-Pomorskie	2013 8 3	13	51,2
DK10 Człopa	Zachodnio-Pomorskie	2013 6 20	14	57,7
DK10 Kruszyniec	Kujawsko-Pomorskie	2013 6 21	13	52,9
DK15 Żabieńko	Kujawsko-Pomorskie	2012 7 6	14	45,9
DK25 Koronowo	Kujawsko-Pomorskie	2013 6 21	14	56,6
DK45 Zawada	Opolskie	2013 8 8	15	57,4
DK50 Brok	Mazowieckie	2010 7 15	14	58,0
DK59 Myszyniec Stary	Mazowieckie	2010 7 12	13	56,8
DK7 Pepłowo	Mazowieckie	2010 7 11	14	54,6
DK8 Podborze	Mazowieckie	2012 7 6	14	53,6
DW426 Zalesie Śląskie	Opolskie	2013 7 28	14	59,9
S10 Lipniki	Kujawsko-Pomorskie	2011 6 5	14	51,8
S10 Zielonka	Kujawsko-Pomorskie	2012 7 28	14	53,1
S6 Kobylnica	Pomorskie	2011 6 6	14	52,0
S8 Choroszcz	Podlaskie	2013 6 21	14	50,8
S8 Jeżewo	Podlaskie	2013 7 28	14	51,9
S8 Żółtki	Podlaskie	2013 6 21	14	49,9

Tablica 5.3. Najwyższe odnotowane temperatury nawierzchni

Na rysunku 5.4 przedstawiono rozkłady temperatury na głębokości konstrukcji nawierzchni. Na wykresie zamieszczono rozkłady temperatury nawierzchni dla czterech stacji z najwyższymi zaobserwowanymi temperaturami. Warto zwrócić uwagę na fakt, że temperatura na głębokości -5 cm na każdej ze stacji szybko spada do około 48°C, natomiast na głębokości - 30 cm wynosi już mniej niż 35°C.

Rysunek 5.4. Rozkład temperatury w nawierzchni w przypadku najwyższych odnotowanych temperatur. Na wykresie zamieszczono rozkłady z czterech stacji z najwyższymi zaobserwowanymi temperaturami nawierzchni.

Na rysunku 5.5 przedstawiono przebieg zmian temperatury na stacji DW 426 Zalesie Śląskie w województwie Opolskim, w okresie kilku dni bezpośrednio przed i po osiągnięciu maksymalnej temperatury nawierzchni. Na wykresie widoczne są dobowe wahania temperatury oraz dni z wyraźnie niższą temperaturą nawierzchni (wynikającą z czynników atmosferycznych jak opady lub duże zachmurzenie itp.). Obserwuje się brak dobowych wahań temperatury na głębokości -30 cm, temperatura na tej głębokości jednak stopniowo, bardzo powoli wzrasta w kolejnych dniach.

Rysunek 5.5. Wykres godzinowych zmian temperatury nawierzchni na stacji DW426 Zalesie Śląskie (woj. Opolskie) w okresie między 14 lipca a 1 sierpnia 2013 r.

5.3. Czas utrzymywania się niskich i wysokich temperatur nawierzchni

Jak przedstawiono w punkcie 5.2 temperatura nawierzchni ulega wahaniom w ciągu doby. Inne są wahania temperatury w okresie letnim, inne w okresie zimowym. Latem amplituda dobowych zmian temperatury jest większa niż zimą a czas utrzymywania się wysokich temperatur, czyli temperatur powyżej przyjętego poziomu (np. 40°C), trwa kilka godzin. Z drugiej strony podczas zimy okres utrzymywania się niskich temperatur nawierzchni (poniżej przyjętej wartości, np. -10°C) może trwać długo (kilka, a nawet kilkanaście dni). Długość trwania okresu utrzymywania się temperatury nawierzchni poniżej danego poziomu jest istotna ze względu na powstające w nawierzchni naprężenia rozciągające oraz relaksację tych naprężeń, co wiąże się z intensywnością powstawania spękań niskotemperaturowych. Przedmiotem tej części analizy było określenie:

- najdłuższego okresu, w którym na danej stacji temperatura nawierzchni utrzymywała się poniżej określonego poziomu,
- liczby przejść temperatury nawierzchni przez określony poziom temperatury nawierzchni.

Do zobrazowania metodologii analizy wybrano przykładowy pomiar przeprowadzony na stacji DK8 Podborze w okresie od 19 do 31 stycznia 2010 r (rys.5.6). Strzałkami

zaznaczono czas utrzymywania się temperatury poniżej określonego poziomu. Przykładowo czas utrzymywania się temperatury nawierzchni poniżej poziomu -5°C wyniósł w tym okresie 192 godziny (8 dni). W analizach dla każdej ze stacji poszukiwano najdłuższego okresu z utrzymującymi się temperaturami poniżej określonego poziomu. Wyniki tych analiz zamieszczono w tablicy 5.4.

Rysunek 5.6. Zobrazowanie czasu nieprzerwanego utrzymywania się temperatury nawierzchni poniżej określonej wartości na przykładzie wykresu zmian temperatur na stacji

Tablica 5.4. Najdłuższy zmierzony czas nieprzerwanego utrzymywania się niskich temperatur nawierzchni (okres pomiaru różny na poszczególnych stacjach, por. tablica 5.1)

		Najdłuższy	czas nieprzer	wanego utrzy	mywania się	temperatury
Stacja	województwo		naw	ierzchni [god:	ziny]	
		poniżej 0	poniżej -5	poniżej -10	poniżej -15	poniżej -20
DK1 Probostwo	Kujawsko- Pomorskie	286	70	19	13	0
DK10 Człopa	Zachodnio- Pomorskie	169	19	16	10	4
DK10 Kruszyniec	Kujawsko- Pomorskie	16	12	4	0	0
DK15 Żabieńko	Kujawsko- Pomorskie	472	116	17	2	0
DK25 Koronowo	Kujawsko- Pomorskie	425	165	22	16	0
DK3 Radomierz	Dolnośląskie	420	91	21	13	5
DK45 Zawada	Opolskie	334	44	18	12	0
DK50 Brok	Mazowieckie	451	190	69	17	6
DK59 Myszyniec Stary	Mazowieckie	453	227	139	19	9
DK7 Pepłowo	Mazowieckie	476	237	139	19	6
DK8 Podborze	Mazowieckie	746	261	143	85	18
DW426 Zalesie Śląskie	Opolskie	167	21	18	11	0
S10 Lipniki	Kujawsko- Pomorskie	403	188	21	15	0
S10 Zielonka	Kujawsko- Pomorskie	401	163	19	14	0
S6 Kobylnica	Pomorskie	425	68	20	17	12
S8 Choroszcz	Podlaskie	442	99	19	4	0
S8 Jeżewo	Podlaskie	445	124	20	12	1
S8 Żółtki	Podlaskie	326	101	20	6	0

Drugą częścią analiz było wyznaczenie liczby przejść temperatury poniżej danego poziomu. Przykładowo na stacji DK8 Podborze w okresie 19.01-31.01.2010 r. temperatura nawierzchni 3 razy spadła poniżej poziomu -10°C (przy czym okresy utrzymywania się temperatury poniżej -10°C wynosiły odpowiednio 14h, 120h, 12h - por. rys. 5.6). Celem tej części analiz było wyznaczenie liczby przejść temperatury poniżej danego poziomu dla <u>okresu jednego roku</u>. W tym celu ze zbioru wszystkich danych wybrano tylko te dane, które zostały zarejestrowane w okresie od 10 września 2012 r. do 11 września 2013 r. Okres ten dobrano w taki sposób, aby uzyskać zakres danych z pełnego roku dla możliwie dużej liczby stacji. Wyniki przedstawiono w tablicy 5.5.

Tablica	5.5.	Liczba	przejść	przez	określony	poziom	niskich	temperatur	w	zimie
2012/13				-	-	-		-		

Stacja	Województwo	liczba dni miarodajnych w okresie od 10-09-	Liczba przejść temperatury nawierzchni poniżej poziomu temperatury						
		2012 do 11-09- 2013	0°C	-5°C	-10°C	-15°C	-20°C		
DK1 Probostwo	Kujawsko- Pomorskie	354	71	35	6	0	0		
DK10 Człopa	Zachodnio- Pomorskie	354	61	32	5	0	0		
DK25 Koronowo	Kujawsko- Pomorskie	362	72	37	5	0	0		
DK3 Radomierz	Dolnośląskie	338	76	33	4	0	0		
DK50 Brok	Mazowieckie	340	77	28	6	0	0		
DK59 Myszyniec Stary	Mazowieckie	353	81	29	12	0	0		
DK7 Pepłowo	Mazowieckie	351	81	41	13	1	0		
DK8 Podborze	Mazowieckie	359	80	29	12	4	0		
DW426 Zalesie Śląskie	Opolskie	350	79	18	4	0	0		
S10 Lipniki	Kujawsko- Pomorskie	334	62	25	4	0	0		
S10 Zielonka	Kujawsko- Pomorskie	355	62	33	6	0	0		
S6 Kobylnica	Pomorskie	358	73	26	2	0	0		
S8 Choroszcz	Podlaskie	332	81	41	12	1	0		

W analogiczny sposób jak dla niskich temperatur wyznaczono najdłuższy czas nieprzerwanego utrzymywania się temperatury powyżej określonego poziomu (tablica 5.6) oraz liczbę przejść temperatury powyżej określonego poziomu (tablica 5.7). Wysokie temperatury nawierzchni utrzymują się znacznie krócej niż temperatury niskie. Najdłuższy zmierzony czas nieprzerwanego utrzymywania się temperatury nawierzchni powyżej 40°C na wszystkich stacjach jest krótszy niż 12 h. Oznacza to, że w okresie lata nawierzchnia szybko nagrzewa się do wysokiego poziomu temperatur, ale równie szybko ochładza się. Wysokie temperatury osiągane są z kolei częściej w ciągu roku. Temperatura nawierzchni może przekraczać wartość 40 nawet do 100 razy w ciągu roku (por. tablica 5.7).

Tablica 5.6. Najdłuższy zmierzony czas nieprzerwanego utrzymywania się wysokich temperatur nawierzchni (okres pomiaru jest różny na poszczególnych stacjach por. tablica 5.1)

Stacia	Województwo	Najdłuższy czas nieprzerwanego utrzymywania się temperatury nawierzch [godziny]					
,	,	powyżej 40°C	powyżej 45°C	powyżej 50°C	powyżej 55°C		
DK1 Probostwo	Kujawsko-Pomorskie	10	8	4	0		
DK10 Człopa	Zachodnio-Pomorskie	10	9	7	4		
DK10 Kruszyniec	Kujawsko-Pomorskie	10	7	4	0		
DK15 Żabieńko	Kujawsko-Pomorskie	10	7	5	2		
DK25 Koronowo	Kujawsko-Pomorskie	8	5	0	0		
DK3 Radomierz	Dolnośląskie	11	8	6	3		
DK45 Zawada	Opolskie	11	9	7	3		
DK50 Brok	Mazowieckie	10	7	6	3		
DK59 Myszyniec Stary	Mazowieckie	11	8	6	3		
DK7 Pepłowo	Mazowieckie	10	8	6	4		
DK8 Podborze	Mazowieckie	10	6	4	0		
DW426 Zalesie Śląskie	Opolskie	10	7	5	0		
S10 Lipniki	Kujawsko-Pomorskie	10	8	7	5		
S10 Zielonka	Kujawsko-Pomorskie	9	5	3	0		
S6 Kobylnica	Pomorskie	9	7	5	0		
S8 Choroszcz	Podlaskie	9	7	2	0		
S8 Jeżewo	Podlaskie	9	6	2	0		
S8 Żółtki	Podlaskie	9	6	2	0		

Tablica 5.7. Liczba przejść przez określony poziom wysokich temperatur nawierzchni w lecie 2013

	Województwo	liczba dni miarodajnych w	Lic: nawi	zba przejś erzchni po	ć tempera wyżej poz	tury iomu
Stacja		okresie od 10-09- 2012 do 11-09- 2013	40°C	45°C	50°C	55°C
DK1 Probostwo	Kujawsko- Pomorskie	354	76	36	12	0
DK10 Człopa	Zachodnio- Pomorskie	354	100	57	32	12
DK25 Koronowo	Kujawsko- Pomorskie	362	90	54	23	3
DK3 Radomierz	Dolnośląskie	338	61	44	15	4
DK50 Brok	Mazowieckie	340	70	39	17	0
DK59 Myszyniec Stary	Mazowieckie	353	70	44	9	0
DK7 Pepłowo	Mazowieckie	351	59	28	2	0
DK8 Podborze	Mazowieckie	359	58	28	8	0
DW426 Zalesie Śląskie	Opolskie	350	84	66	37	13
S10 Lipniki	Kujawsko- Pomorskie	334	70	29	4	0
S10 Zielonka	Kujawsko- Pomorskie	355	75	33	12	0
S6 Kobylnica	Pomorskie	358	64	24	2	0
S8 Choroszcz	Podlaskie	332	65	27	4	0

5.4. Gradient temperatury górnej powierzchni nawierzchni

Poprzez gradient temperatury nawierzchni rozumie się tempo zmiany temperatury pomiędzy kolejnymi godzinami w ciągu doby [°C/h]. Tempo ochładzania się nawierzchni ma znaczenie w przypadku analizowania naprężeń termicznych powstających w nawierzchni. W analizie przede wszystkim poszukiwano maksymalnych wartości godzinowych spadków temperatury nawierzchni mających znaczenie przy powstawaniu spękań niskotemperaturowych. Zaobserwowano, że w okresie letnim może nastąpić szybki spadek temperatury nawierzchni np. w wyniku gwałtownych opadów poprzedzonych upałem, dlatego też do określenia maksymalnych spadków temperatury rozpatrywano te dni w roku, w których temperatura nawierzchni była niższa niż 0°C.

Na rysunku 5.7 przedstawiono przykładowy wykres zmian temperatury w ciągu dwóch dni wybranych na stacji DK8 Probostwo (woj. Kujawsko-Pomorskie). Na rysunku zobrazowano okres ochładzania się nawierzchni z ujemnym gradientem temperatury oraz okres ogrzewania się nawierzchni z gradientem dodatnim. Każdorazowo gradient mierzony był między dwiema sąsiednimi godzinami.

Rysunek 5.7. Zmiany temperatury górnej powierzchni nawierzchni na stacji DK8 Podborze w dniach 23-24 stycznia 2010 r. wraz z zobrazowanym okresem ochładzania i ogrzewania się nawierzchni oraz zaznaczonym przykładowym gradientem temperatury.

Na każdej ze stacji w całym dostępnym okresie pomiarowym (w którym temperatury nawierzchni były ujemne) określono gradienty w poszczególnych godzinach. Następnie sporządzono rozkład prawdopodobieństwa występowania określonych gradientów temperatury, który przedstawiono na rysunku 5.8. W tablicy 5.8 podano maksymalne wartości gradientu temperatury wyznaczone dla określonego prawdopodobieństwa.

Rysunek 5.8. Rozkład prawdopodobieństwa występowania gradientu temperatury górnej powierzchni nawierzchni wyznaczony dla danych ze wszystkich stacji

pomiarowych dla okresów, w których temperatura nawierzchni utrzymywała się poniżej 0°C.

Tablica 5.8. Prawdopodobieństwa wystąpienia prędkości ochładzania się górnej powierzchni nawierzchni $V_T(^{\circ}C/h)$ na podstawie danych ze wszystkich stacji pomiarowych wg tablicy 5.1.

Prawdopodobieństwo wystąpienia gradientu temperatury nie mniejszego niż V _T	Prędkość ochładzania się nawierzchni V _T (°C/h)
99,9%	V _T ≥ 3,7
99%	V _T ≥ 2,1
95%	V _T ≥ 1,2
90%	V _T ≥ 0,8
85%	V _T ≥ 0,6

Z tablicy 5.8 wynika, że przyjmowana w niniejszym opracowaniu prędkość oziębiania się nawierzchni $V_T = 3^{\circ}C/h$ występuje w bardzo małym przedziale czasu.

6. Terenowa ocena odcinków dróg z AC WMS oraz odcinków porównawczych bez AC WMS

6.1. Wstęp

W 2013 roku kontynuowano ocenę techniczną odcinków wytypowanych do szczegółowej oceny w roku 2012. Dokładne informacje o wytypowanych odcinkach oraz o metodologii prowadzonej oceny wizualnej odcinków zawarto w raporcie z II etapu badań. W roku 2013 uwzględniono w ocenie nowe, porównawcze odcinki dróg. Odcinki porównawcze, wykonane bez użycia AC WMS, dobierano w taki sposób, aby znajdowały się w tych samych regionach co oceniane odcinki z AC WMS i aby były wykonane w podobnym okresie, oraz aby były obciążone podobnym ruchem.

6.2. Informacje o odcinkach wytypowanych do oceny terenowej

Wykaz wszystkich odcinków badanych w 2013 zestawiono w tablicy 6.1 (odcinki z zastosowaniem betonu AC WMS) oraz w tablicy 6.2 (odcinki porównawcze). W ocenie uwzględniono łącznie 31 odcinków z AC WMS w tym cztery odcinki autostradowe, sześć odcinków na drogach ekspresowych, 15 odcinków na drogach krajowych i wojewódzkich, i trzy odcinki miejskie. Łączna długość badanych odcinków z AC WMS wynosi 393 km. Na rysunku 6.1 przedstawiono lokalizację obserwowanych odcinków z AC WMS. Od roku 2013 prowadzona jest obserwacja na odcinkach porównawczych z zastosowanymi zwykłymi betonami asfaltowymi w podbudowie i warstwie wiążącej. W 2013 r. oceniono łącznie 17 odcinków porównawczych o łącznej długości 72 km. W analizie oceny terenowej główny nacisk położono na częstość występowania spękań poprzecznych. Jedną z przyczyn spękań poprzecznych jest oddziaływanie niskiej temperatury i powstające w nawierzchni naprężenia rozciągające. Istnieje uzasadniona hipoteza, że odcinki z

zastosowanym betonem asfaltowym AC WMS mogą wykazywać większą wrażliwość na powstawanie spękań niskotemperaturowych. Jednym z celów przeprowadzanej trzyletniej oceny terenowej jest potwierdzenie lub odrzucenie stawianej hipotezy.

Rysunek 6.1 Lokalizacja obserwowanych odcinków dróg z zastosowanym AC WMS

Tablica 6.1. Wykaz odcinków dróg z zastosowaniem betonu asfaltowego AC WMS, podlegających ocenie wizualnej

Droga	Odcinek	Województwo	Przekrój drogi	Obciążenie ruchem	Rodzaj asfaltu
A8	Autostradowa Obwodnica Wrocławia	Dolnośląskie	2x3 / 2x2	KR5/KR6	25/55-60
S8	Pawłowice - Dąbrowa	Dolnośląskie	2x2	KR5/KR6	20/30
S8	Cieśle - Syców	Dolnośląskie	2x2	KR5/KR6	20/30
DK 5	Kostomłoty - Strzegom	Dolnośląskie	1x2	KR5/KR6	20/30
DK 35	Obwodnica Tyńca	Dolnośląskie	2x2	KR5/KR6	25/55-60
DK 46	Kłodzko - Podzamek	Dolnośląskie	1x2	KR5/KR6	25/55-60
DK 46	Podzamek - Granica województwa	Dolnośląskie	1x2	KR5/KR6	20/30
DK 41	Prudnik - Granica państwa	Opolskie	1x2	KR4	20/30
DK 45	Boguszyce - Winów	Opolskie	1x2	KR4	20/30
DP 2002O	ul. Piastowska w Opolu	Opolskie	1x2	KR4	35/50
S 8	Jeżewo - Białystok	Podlaskie	2x2	KR6	20/30
S 8	Obwodnica Zambrowa	Podlaskie	2x2	KR6	b/d

DK 8	Sztabin - Kolnica	Podlaskie	1x2	KR6	DE 30B
DK 8	Białystok - Katrynka	Podlaskie	1x2 / 2x2	KR6	20/30
DK 19	Obwodnica Wasilkowa	Podlaskie	2x2	KR6	b/d
DK 7	ul. Zwycięstwa w Gdańsku	Pomorskie	1x3	KR4	20/30
DW 468	ul. Podwale Przedmiejskie w Gdańsku	Pomorskie	1x4 / 1x3	KR5	20/30
A 2	Komorniki - Krzesiny	Wielkopolskie	2x2	KR6	D50 + polietylen
A 2	Komorniki - Nowy Tomyśl	Wielkopolskie	2x2	KR6	b/d
A 2	Konin - Koło - Dąbie	Wielkopolskie	2x2	KR6	20/30 i 35/50 + chemcrete
S 5	Wschodnia Obwodnica Poznania	Wielkopolskie	2x2	KR6	25/55-60
S 11	Zachodnia Obwodnica Poznania	Wielkopolskie	2x2	KR6	25/55-60 i 20/30
S 11	Poznań - Kurnik	Wielkopolskie	2x2	KR6	20/30
S 11	Obwodnica Ostrowa Wielkopolskiego	Wielkopolskie	2x2	KR5	35/50 + chemcrete
DK 5	Obwodnica Poznania	Wielkopolskie	1x2	KR6	20/30
DK 15	Obwodnica Gniezna	Wielkopolskie	1x2	KR5	20/30
DK 92	Iwno - Starczanowo	Wielkopolskie	2x2	KR5	D50 + polietylen
DK 92	Starczanowo - Września	Wielkopolskie	2x2	KR5	20/30
DW 196	Koziegłowy/Czerwonak	Wielkopolskie	1x2	KR4	D50 + polietylen
DK92	Grońsko	Wielkopolskie	1x2	KR5	b/d
DK10	Mirosławiec	Zachodniopomorsk ie	1x2	KR4	DE 30B (25/55-60)

Tablica 6.2. Wykaz porównawczych odcinków dróg (bez użycia AC WMS) podlegających ocenie wizualnej

Droga	Odcinek	Województwo	Przekrój drogi	Obciążenie ruchem
DW381	Obwodnica Nowej Rudy	Dolnośląskie	1x2	KR3
DK5	Obwodnica Kamiennej Góry	Dolnośląskie	1x2	KR3
DK94	Wilków - Środa Śląska - Mazurowice	Dolnośląskie	1x2	KR5
DK46	Dębska Kuźnia - Schodnia	Opolskie	1x2	KR5
DK46	Schodnia	Opolskie	1x2	KR5
DK46	Grodziec-Myślina	Opolskie	1x2	KR5
DK94	Strzelce Opolskie	Opolskie	1x2	KR4
DK45	Winów-Boguszyce	Opolskie	1x2	KR5
DK45	Boguszyce	Opolskie	1x2	KR5
DK11	Chodzież	Wielkopolskie	1x2	KR5
DK15	Obwodnica Gniezna 145+600-151	Wielkopolskie	1x2	KR5
DK11	Suchy Las	Wielkopolskie	1x2	KR5
DK8	przed Sztabinem	Podlaskie	1x2	KR6
DK8	za Sztabinem	Podlaskie	1x2	KR6

DK8	km 723-725	Podlaskie	1x2	KR6
-	Obwodnica Augustowa - odcinek nieoddany	Podlaskie	1x2	brak ruchu
-	Droga autobusowa wzdłuż DK8	Podlaskie	1x2	b/d

6.3. Ocena spękań poprzecznych

Zestawienie zaobserwowanych spękań poprzecznych nawierzchni zamieszczono w tablicy 6.3 (odcinki z AC WMS) oraz w tablicy 6.4 (odcinki porównawcze bez użycia AC WMS). Widoczne jest, że na większości odcinków z AC WMS liczba spękań wzrosła w roku 2013 względem roku 2012. Na części odcinków niespękanych w 2012 r. stwierdzono spękania w roku 2013. Odcinki te zostały podkreślone w tablicy 6.3. Zaobserwowano, że zarówno nawierzchnie wybudowane z zastosowaniem AC WMS jak i bez niego mogą wykazywać wysoką intensywność spękań wyrażoną indeksem spękań, jak również mogą wykazywać brak spękań.

Tablica 6.3. Zestawienie spękań poprzecznych nawierzchni na odcinkach z zastosowaniem AC WMS (zaznaczono odcinki niespękane w 2012 r., na których stwierdzono spękania w 2013 r.)

		Odcinek	Długość		Ocena 2012		Ocena 2013	
Woje- wództwo	Droga		Rok budowy	odcinka (km)	Liczba spękań	Indeks spękań na 1 km	Liczba spękań	Indeks spękań na 1 km
	DK 5	Kostomłoty - Strzegom	2010	18,71	0	0	6	0,3
	DK 46	Podzamek - Granica województwa	2010	13,08	15	1,1	19	1,5
Dolno- ślaskie	A8	Autostradowa Obwodnica Wrocławia	2011	28,4	0	0	0	0
51451416	DK 35	Obwodnica Tyńca	2011	5,15	0	0	0	0
	DK 46	Kłodzko - Podzamek	2011	6,11	4	0,7	4	0,7
	S8	Pawłowice - Dąbrowa	2012	22,093	b/o	b/o	0	0
	S8	Cieśle - Syców	2012	25,11	b/o	b/o	0	0
	DP 2002O	ul. Piastowska w Opolu	2010	0,8	1	1,3	1	1,3
Opolskie	DK 41	Prudnik - Granica państwa	2011	3,75	0	0	0	0
	DK 45	Boguszyce - Winów	2011	4,45	0	0	0	0
	DK 8	Sztabin - Kolnica	2005	5,25	31	5,9	40	7,6
	DK 8	Białystok - Katrynka	2009	6,43	57	8,9	101	15,7
Podlaskie	DK 19	Obwodnica Wasilkowa	2011	5	1	0,2	14	2,8
	S 8	Jeżewo - Białystok	2012	24,5	52	2,1	85	3,5
	S 8	Obwodnica Zambrowa	2012	11,07	0	0	20	1,8
Pomorskie	DK 7	ul. Zwycięstwa w Gdańsku	2009	1	0	0	0	0

	DW 468	ul. Podwale Przedmiejskie w Gdańsku	2009	1	0	0	0	0
	DK92	Grońsko	2002	1,01	0	0	8	7,9
	A 2	Komorniki - Krzesiny	2003	13,3	0	0	22	1,7
	DK 5	Obwodnica Poznania	2003	2,7	16	5,9	22	8,1
	DK 92	Iwno - Starczanowo	2003	9	131	7,3	473	26,3
	DW 196	Koziegłowy/Czerw onak	2003	3,1	43	13,9	61	19,7
Wielko- polskie	A 2	Konin - Koło - Dąbie	2005	45,58	0	0	b/o	b/o
	DK 15	Obwodnica Gniezna	2005	6,26	30	4,8	62	9,9
	DK 92	Starczanowo - Września	2006	8	34	2,1	112	7
	A 2	Komorniki - Nowy Tomyśl	2009	50,4	0	0	24	0,5
	S 11	Obwodnica Ostrowa Wielkopolskiego	2009	6,1	0	0	0	0
	S 5	Wschodnia Obwodnica Poznania	2012	34,64	0	0	6	0,2
	S 11	Zachodnia Obwodnica Poznania	2012	21,94	b/o	b/o	0	0
	S 11	Poznań - Kurnik	2006/2 009	9,1	0	0	6	0,7
Zachodnio- pomorskie	DK10	Mirosławiec	2004	0,8	0	0	0	0

Woje- wództwo	Droga	Odcinek		Dhumaáá	Ocena	a 2012	Ocena 2013	
			Rok budowy	odcinka (km)	Liczba spękań	Indeks spękań na 1 km	Liczba spękań	Indeks spękań na 1 km
	DW381	Obwodnica Nowej Rudy	2008	3,6	b/o	b/o	24	6,7
Dolno-	DK5	Obwodnica Kamiennej Góry	2005	2,9	b/o	b/o	17	5,9
SIQSKIE	DK94	Wilków - Środa Śląska - Mazurowice	2009	8,7	b/o	b/o	2	0,2
Opolskie	DK46	Dębska Kuźnia - Schodnia	2010	5,2	b/o	b/o	4	0,8
	DK46	Schodnia	2010	1	b/o	b/o	0	0
	DK46	Grodziec-Myślina	2011	4,65	b/o	b/o	0	0
opololilo	DK94	Strzelce Opolskie	2011	1,6	b/o	b/o	0	0
	DK45	Winów-Boguszyce	2011	4,45	b/o	b/o	7	1,6
	DK45	Boguszyce	2011	1	b/o	b/o	0	0
	DK8	przed Sztabinem	b/d	2	b/o	b/o	5	2,5
	DK8	za Sztabinem	b/d	2	b/o	b/o	1	0,5
	DK8	km 723-725	b/d	3	b/o	b/o	1	0,3
Podlaskie		Obwodnica Augustowa - odcinek nigdy nieoddany	2008	1,8	b/o	b/o	0	0
		Droga autobusowa wzdłuż DK8	2012	23,66	b/o	b/o	103	4,4
	DK11	Chodzież	2009	1	b/o	b/o	3	3
Wielko- polskie	DK15	Obwodnica Gniezna 145+600- 151	2008	5,4	b/o	b/o	3	0,6
	DK11	Suchy Las	2008	1	b/o	b/o	0	0

Tablica 6.4. Zestawienie spękań poprzecznych nawierzchni na odcinkach porównawczych (bez użycia AC WMS)

b/d - brak danych

b/o - brak oceny odcinka w danym roku

Dwuletnia obserwacja odcinków z AC WMS wykazała, że po upływie roku liczba odcinków ze stwierdzonymi spękaniami poprzecznymi wzrosła, co zobrazowano na rysunku 6.2. W tablicy 6.3 zaznaczono odcinki nie spękane w 2012 r., a na których stwierdzono spękania podczas oceny w 2013 r. Informacje o tych odcinkach zebrano i wyszczególniono w tablicy 6.5. Wśród nich są dwa odcinki ponad dziesięcioletnie, są też odcinki nowe, wybudowane w 2012 r.

Rysunek 6.2. Liczba spękanych i niespękanych odcinków z AC WMS na podstawie oceny w roku 2012 i 2013.

						Ocena 2013			
Nr. Drogi	Odcinek	Województwo	Rok budowy	Przekrój	Rodzaj asfaltu	Długość odcinka	Spękań na 1 km	Liczba spękań razem	
DK92	Grońsko	Wielkopolskie	2002	1x2	b/d	1,01	7,9	8	
S8	Obwodnica Zambrowa	Podlaskie	2012	2x2	b/d	11,07	1,8	20	
A2	Komorniki - Krzesiny	Wielkopolskie	2003	2x2	D50 + polietylen	13,3	1,7	22	
S11	Poznań - Kurnik	Wielkopolskie	2006/2009	2x2	20/30	9,1	0,7	6	
A2	Komorniki - Nowy Tomyśl	Wielkopolskie	2009	2x2	b/d	50,4	0,5	24	
DK5	Kostomłoty - Strzegom	Dolnośląskie	2010	1x2	20/30	18,71	0,3	6	
S5	Wschodnia obwodnica Poznania	Wielkopolskie	2012	2x2	25/55-60	34,64	0,2	6	

Na podstawie oceny przeprowadzonej w 2013 r. stwierdzono, że na wszystkich drogach w województwie podlaskim, na których zastosowano beton asfaltowy AC WMS zaobserwowano spękania poprzeczne. Stosunkowo najmniej odcinków spękanych zaobserwowano w województwach dolnośląskim i opolskim (poniżej 55% wszystkich ocenianych odcinków z AC WMS). Z porównania stosunku odcinków spękanych do wszystkich analizowanych odcinków (rysunek 6.3) wynika, że w województwie podlaskim i wielkopolskim spękanych jest więcej odcinków z AC WMS niż ze zwykłym betonem asfaltowym. Podczas opracowania niniejszego raportu niedostępne były wszystkie dane o wieku odcinków bez AC WMS, w związku z czym

stwierdzenie, czy odcinki z zastosowanym betonem AC WMS wykazują więcej spękań niż odcinki z zastosowanym zwykłym betonem asfaltowym wymaga jeszcze przeprowadzenia dalszych obserwacji i analiz.

Rysunek 6.3. Porównanie stosunku odcinków spękanych do wszystkich analizowanych odcinków w poszczególnych województwach

Na rysunkach 6.4 i 6.5 przedstawiono zależność udziału odcinków spękanych i niespękanych w zależności od wieku nawierzchni, odpowiednio dla odcinków z zastosowanym betonem AC WMS i bez niego. Zaobserwowano, że procentowa liczba odcinków spękanych i niespękanych na drogach, na których zastosowano beton asfaltowy AC WMS i na odcinkach na których go nie stosowano jest zbliżona. Na 40% nowych odcinków stwierdzono spękania poprzeczne. W przypadku nawierzchni w wieku 2-5 lat stwierdzono spękania na około 65% odcinków. W przypadku dróg z AC WMS w wieku powyżej 5 lat zaledwie 20% odcinków nie wykazuje spękań poprzecznych. Na rysunkach 6.1 - 6.5 podano liczbę odcinków obserwowanych aby wskazać istotność oceny.

Rysunek 6.4. Liczba odcinków spękanych i niespękanych w zależności od wieku nawierzchni, odcinki z AC WMS.

Rysunek 6.5. Liczba odcinków spękanych i niespękanych w zależności od wieku nawierzchni, odcinki bez AC WMS.

Elementem analizy było wyznaczenie najbardziej spękanych odcinków z zastosowanym AC WMS (Tablica 6.6). Z obserwacji wynika, że największą ilością spękań na 1 km odznaczają się dwa odcinki z 2003 r. Warto zwrócić uwagę na odcinek S8 Jeżewo Białystok, który wybudowano w 2012 r., a na którym już po roku stwierdzono bardzo dużą liczbę spękań poprzecznych.

Tablica 6.6. Najbardziej spękane odcinki z użytym AC WMS (ocena 2013 r.)
Nr drogi	Odcinek	Województwo	Rok budowy	Przekrój	Rodzaj asfaltu	Spękania/km jednej jezdni	Spękania razem
DK92	Iwno - Starczanowo	Wielkopolskie	2003	2x2	D50 + polietylen	26,3	473
DW196	Koziegłowy - Czerwonak	Wielkopolskie	2003	1x2	D50 + polietylen	19,7	61
DK15	Obwodnica Gniezna	Wielkopolskie	2005	1x2	20/30	9,9	62
DK8	Białystok - Katrynka	Podlaskie	2009	1x2 / 2x2	20/30	7,9	101
DK8	Sztabin - Kolnica	Podlaskie	2005	1x2	DE 30B	7,6	40
DK92	Starczanowo - Września	Wielkopolskie	2006	2x2	20/30	7	112
S8	Jeżewo - Białystok	Podlaskie	2012	2x2	20/30	2,4	120

W tablicy 6.7 zestawiono rodzaje stosowanych asfaltów w warstwach z AC WMS, liczbę odcinków z zastosowanym danym asfaltem oraz zaobserwowanych spękanych odcinków. W zestawieniu zamieszczono odcinki w różnym wieku, jednakże zarówno w grupie nawierzchni, w których zastosowano w warstwach z AC WMS asfalty zwykłe jak i modyfikowane znajdują się odcinki starsze i nowsze. Do betonu AC WMS najczęściej stosowany był asfalt zwykły 20/30. Z zestawienia wynika, że udział spękanych odcinków z zastosowanym asfaltem zwykłym i modyfikowanym do warstw z AC WMS jest zbliżony. Na tym etapie prac nie można jednoznacznie stwierdzić, że zastosowanie asfaltu modyfikowanego wpłynie bądź nie na zmniejszenie ryzyka powstawania spękań nawierzchni. Do stwierdzenia wpływu stosowanego rodzaju asfaltu na spękania nawierzchni potrzebne są jeszcze kolejne analizy.

Tablica 6.7. Liczba odcinków z zaobserwowanymi spękaniami w zależności od zastosowanego rodzaju asfaltu (uwaga: odcinki są w różnym wieku)

Rodzaj asfaltu	Liczba odcinków z zastosowanym asfaltem	Liczba odcinków spękanych		
20/30 (zwykły)	15	8		
35/50(zwykły)	1	1		
Asfalty zwykłe (łącznie)	16	9		
25/55-60 (modyfikowany SBS)	4	2		
DE 30B (modyfikowany SBS)	2	1		
35/50 (modyfikowany chemcretem)	2	0		
D50 (modyfikowany polietylenem)	3	3		
Asfalty modyfikowane (łącznie)	11	6		
Brak danych o rodzaju asfaltu	4	4		

6.4. Ocena deformacji trwałych

Deformacje trwałe nawierzchni stwierdzono na następujących odcinkach z użytym AC WMS:

- DK5 obwodnica Poznania,
- DK92 odcinek Iwno-Starczaonowo i odcinek Starczaonowo-Wrześia,
- DK46 Podzamek-granica województwa

Na pozostałych odcinkach nie zaobserwowano kolein. Dokładne zestawienie informacji dotyczących kolein zamieszczono w tablicy 6.8. Z obserwacji wynika, że koleiny powstają na odcinkach szczególnie narażonych na ich powstanie - ruch skanalizowany i powolny (przed sygnalizacją świetlną) oraz na znacznych wzniesieniach.

Tablica 6.8. Zestawienie odcinków z AC WMS na któ	rych stwierdzono koleiny
---	--------------------------

	Odcinki	Woj.	Długość odcinka (km)	Rok budowy	Rodzaj asfaltu	Koleiny		
Droga						% długości odcinka	średnia głębokość [mm]	uwagi
DK 5	Obwodnica Poznania	Wielko- polskie	2,7	2003	20/30	48%	12	Ruch mocno skanalizowany, obszar miejski częste sygnalizacje świetlne
DK 92	Iwno Starcza- nowo	Wielko- polskie	9,0	2003	D50+ PE	40%	30	Koleiny głównie bezpośrednio przed skrzyżowaniam i z sygnalizacją świetlną
DK 92	Starcza- nowo - Września	Wielko- polskie	8,0	2006	20/30	40%	30	Koleiny głównie bezpośrednio przed skrzyżowaniam i z sygnalizacją świetlną
DK46	Podzamek- granica wojew.	Dolno- śląskie	13,1	2010	20/30	3%	7	Koleina na dużym wzniesieniu

6.5. Wnioski

W niniejszym rozdziale przedstawiono wyniki z drugiego roku obserwacji 31 odcinków dróg na których zastosowano beton asfaltowy AC WMS. W roku 2013 do oceny dodano 17 kolejnych odcinków dróg bez użytego betonu AC WMS. Prowadzona przez dwa lata obserwacja odcinków dróg z zastosowaniem AC WMS wykazała, że:

- za równo w grupie odcinków z zastosowanym AC WMS, jak i w grupie odcinków bez niego stwierdzono odcinki spękane i odcinki bez spękań poprzecznych.
- na większości odcinków z zastosowanym AC WMS spękanych w 2012 r. liczba spękań w roku 2013 wzrosła,

- liczba odcinków spękanych z użytym AC WMS wzrosła w roku 2013 względem roku 2012,
- procentowa liczba odcinków spękanych na odcinkach z zastosowaniem AC WMS i na odcinkach porównawczych (bez zastosowania AC WMS) jest zbliżona
- zarówno na 40% nowych odcinków z zastosowanym AC-WMS i na 40% nowych odcinkach porównawczych stwierdzono spękania poprzeczne,
- stwierdzono spękania poprzeczne na 65% odcinków w wieku 2-5 lat (odcinki z zastowanym AC-WMS i odcinki porównawcze),
- zaledwie 20% odcinków z AC WMS w wieku 5 lat i więcej nie wykazuje spękań poprzecznych,
- w województwie podlaskim na wszystkich badanych odcinkach z AC WMS zaobserwowano spękania poprzeczne,
- w sytuacji, gdy ruch jest skanalizowany i spowolniony (odcinki z licznymi sygnalizacjiami świetlnymi lub odcinki na znacznych wzniesieniach) mieszanki AC WMS mogą ulegać koleinowaniu.

Aby stwierdzić jaki jest wpływ zastosowanego lepiszcza asfaltowego na liczbę spękań poprzecznych oraz aby stwierdzić czy nawierzchnie z zastosowanym betonem asfaltowym AC WMS są bardziej podatne na spękania niskotemperaturowe niż nawierzchnie bez AC WMS konieczne jest prowadzenie dalszych obserwacji terenowych.