

POLITECHNIKA GDAŃSKA Wydział Inżynierii Lądowej i Środowiska Katedra Inżynierii Drogowej

ul. G. Narutowicza 11 80-233 GDAŃSK Tel: (0-58) 347 13 47 Fax: (0-58) 347 10 97

BADANIE WPŁYWU ZASTOSOWANIA WARSTW BETONU ASFALTOWEGO O WYSOKIM MODULE SZTYWNOŚCI (AC-WMS) W KONSTRUKCJACH NAWIERZCHNI NA SPĘKANIA NIESKOTEMPERATUROWE I NA ZMNIEJSZENIE POWSTAWANIA DEFORMACJI TRWAŁYCH

RAPORT Z DRUGIEGO ETAPU

Opracowano na zlecenie:

Generalna Dyrekcja Dróg Krajowych i Autostrad ul. Żelazna 59 00–848 WARSZAWA

Opracowali:

prof. dr hab. inż. Józef Judycki – autor kierujący

dr inż. Bohdan Dołżycki

dr inż. Marek Pszczoła

mgr inż. Mariusz Jaczewski

mgr inż. Łukasz Mejłun

mgr inż. Dawid Ryś

Kierownik Katedry Inżynierii Drogowej – prof. dr hab. inż. Józef Judycki

Gdańsk, listopad 2012

SPIS TREŚCI

1. WS	َ ĘP	7
1.1.	Podstawa opracowania	7
1.2.	CEL PRACY	7
1.3.	ZAKRES PRACY	7
1.3.1.	ZAKRES CAŁEJ KILKUETAPOWEJ PRACY BADAWCZEJ	7
1.3.2.	ZAKRES II ETAPU PRACY BADAWCZEJ	8
2 BAL	ANIA CECH REOLOGICZNYCH BETONÓW ASEAL TOWYCH O WYS	SOKIM
MO	OULE SZTYWNOŚCI W NISKICH TEMPERATURACH	
2.1.	BADANIE ZGINANIA ZE STAŁA PREDKOŚCIA DEFORMACJI	
2.1.1.	Przygotowanie próbek	
2.1.2.	METODYKA BADANIA ZGINANIA ZE STAŁA PREDKOŚCIA DEFORMACJI.	
2.1.3.	WYNIKI BADAŃ ZGINANIA ZE STAŁA PREDKOŚCIA DEFORMACJI	
2.1.3.	1. WYNIKI BADAŃ UZYSKANE W ROKU 2009	
2.1.3.	2. Wyniki badań uzyskane w roku 2012	
2.2.	BADANIE ZGINANIA PRZY STAŁYM OBCIAŻENIU (CREEP TEST)	
2.2.1.	Przygotowanie próbek	
2.2.2.	METODYKA BADANIA ZGINANIA PRZY STAŁYM OBCIAŻENIU (CREEP TEST)	
2.2.3.	Wyniki badań	
2.2.3.	1. OBLICZANIE WYNIKÓW	
2.2.3.	2. WYNIKI BADAŃ PEŁZANIA	
2.2.3.	3. BADANIA WYKONANE W ROKU 2009	
2.2.3.	4. BADANIA WYKONANE W ROKU 2012	
2.3.	LITERATURA	
3. BAC	ANIA CECH REOLOGICZNYCH BETONÓW ASFALTOWYCH O WYS	SOKIM
MO	OULE SZTYWNOŚCI W WYSOKICH TEMPERATURACH	29
3.1.	BADANIE PEŁZANIA STATYCZNEGO	
3.1.1.	Metodyka badania	
3.1.2.	Przyjecie rozmiarów próbki	
3.1.3.	PARAMETRY REOLOGICZNE WYZNACZONE NA PODSTAWIE BADAŃ	
3.1.3.	1. WYZNACZENIE PARAMETRÓW REOLOGICZNYCH Z BADANIA PEŁZANIA STATYCZNEGO	
3.1.3.	2. WYNIKI BADAŃ PEŁZANIA W WYSOKICH TEMPERATURACH	
3.1.3.	3. PARAMETRY REOLOGICZNE DLA POSZCZEGÓLNYCH MIESZANEK	
3.1.4.	WPŁYW WYSOKOŚCI PRÓBKI NA WYNIKI BADAŃ	45
3.2.	BADANIE DYNAMICZNEGO MODUŁU ZESPOLONEGO	
3.2.1.	Metodyka badania	
3.2.1.	1. WYZNACZANIE KRZYWEJ WIODACEJ (MASTER CURVE)	
3.2.2.	WYNIKI BADANIA DYNAMICZNEGO MODUŁU ZESPOLONEGO	
3.2.3.	PARAMETRY REOLOGICZNE WYZNACZONE NA PODSTAWIE MODUŁÓW DYNAMICZNYCH	
3.2.3.	1. WYZNACZANIE PARAMETRÓW REOLOGICZNYCH MODELU BURGERS'A Z BADANIA MODU	ŁU
D	NAMICZNEGO W RÓŻNYCH TEMPERATURACH	
3.2.3.	2. PARAMETRY REOLOGICZNE WYZNACZONE BEZPOŚREDNIO Z BADAŃ	
3.2.3.	3. PARAMETRY REOLOGICZNE WYZNACZONE Z KRZYWYCH WIODĄCYCH	62
3.2.3.	4. PARAMETRY REOLOGICZNE PRZYJĘTE DO DALSZEJ ANALIZY	65

	3.3.	LITERATURA	.70
4.	ANAL	IZA ROZCIĄGAJĄCYCH NAPRĘŻEŃ TERMICZNYCH	71
	4.1.	MECHANIZM POWSTAWANIA SPĘKAŃ NISKOTEMPERATUROWYCH	.71
	4.1.1.	WPŁYW RÓŻNYCH CZYNNIKÓW NA POWSTAWANIE SPĘKAŃ NISKOTEMPERATUROWYCH	.72
	4.1.1.1.	WPŁYW WŁAŚCIWOŚCI ASFALTU	.73
	4.1.1.2.	WPŁYW TYPU I UZIARNIENIA MIESZANKI MINERALNEJ	.74
	4.1.1.3.	WPŁYW CZYNNIKÓW ŚRODOWISKOWYCH	.74
	4.1.1.4.	WPŁYW GRUBOŚCI WARSTW ASFALTOWYCH	.76
	4.1.2.	METODY BADAŃ ASFALTÓW I MIESZANEK MINERALNO-ASFALTOWYCH ZWIĄZANE ZE SPĘKANIAMI	76
	NISK 1 2		. 70
	4.2.		.70
	4.2.1.		.70
	ч.2.2. Ни і	S'A I BRIEN'A	79
	4.2.3.	OBLICZENIE NAPRĘŻEŃ TERMICZNYCH W WARSTWIE PODBUDOWY ASFALTOWEJ DLA WYBRANEJ	.,,
	AUT	OSTRADY	.81
	4.2.4.	OBLICZENIE NAPRĘŻEŃ TERMICZNYCH W OPARCIU O WYNIKI BADAŃ DLA ODCINKA 1	.83
	4.2.4.1.	OBLICZENIE NAPRĘŻEŃ TERMICZNYCH W OPARCIU O WYNIKI BADAŃ DLA WARSTWY WIĄŻĄCE	J83
	4.2.4.2.	OBLICZENIE NAPRĘŻEŃ TERMICZNYCH W OPARCIU O WYNIKI BADAŃ DLA GÓRNEJ WARSTWY	
	POD	BUDOWY	.83
	4.2.4.3.	OBLICZENIE NAPRĘŻEŃ TERMICZNYCH W OPARCIU O WYNIKI BADAŃ DLA DOLNEJ WARSTWY	
	POD	BUDOWY	.84
	4.2.5.	OBLICZENIE NAPRĘŻEŃ TERMICZNYCH W OPARCIU O WYNIKI BADAŃ DLA ODCINKA 2	.85
	4.2.5.1.	OBLICZENIE NAPRĘŻEŃ TERMICZNYCH W OPARCIU O WYNIKI BADAŃ DLA WARSTWY WIĄŻĄCE	J85
	4.2.5.2.	OBLICZENIE NAPRĘŻEŃ TERMICZNYCH W OPARCIU O WYNIKI BADAŃ DLA GÓRNEJ WARSTWY	86
	4253	OBLICZENIE NAPREŻEŃ TERMICZNYCH W OPARCIU O WYNIKI BADAŃ DI A DOLNE I WARSTWY	.00
	POD	BUDOWY	.87
	4.2.6.	ANALIZY NAPREŻEŃ TERMICZNYCH W WARSTWIE ASFALTOWEJ Z ZASTOSOWANIEM RÓŻNYCH	
	ASF	ALTÓW	.88
	4.2.6.1.	Analiza naprężeń termicznych w oparciu o metodę Shell'a	.88
	4.3.	PODSUMOWANIE PRZEPROWADZONEJ WSTĘPNEJ ANALIZY NAPRĘŻEŃ TERMICZNYCH	.90
	4.4.	LITERATURA	.90
5.	ANAL	IZA KONSTRUKCJI NAWIERZCHNI W WARUNKACH	
	PODV	VYŻSZONYCH TEMPERATUR Z WYKORZYSTANIEM PROGRAMU	
	VERC	DAD	94
	5.1.	WPROWADZENIE	.94
	5.1.1.	MODELE MATERIAŁOWE WARSTW KONSTRUKCJI NAWIERZCHNI	.94
	5.1.2.	ROZKŁAD TEMPERATURY W NAWIERZCHNI	.95
	5.1.3.	SYMULACJE W VEROAD	. 95
	5.2.	WSTEPNE OBLICZENIA NA PODSTAWIE WYNIKÓW BADAŃ DYNAMICZNYCH	.95
	5.2.1.	DANE PRZYJĘTE DO OBLICZEŃ	.95
	5.2.2.	WYNIKI OBLICZEŃ W VEROAD	103
	5.2.3.	ANALIZA WSTĘPNYCH WYNIKÓW OBLICZEŃ	110
	5.3.	LITERATURA	111
c			
υ.	SZTY	.i∠a wrtiwu położenia waksiwi u wisukiwi mudule WNOŚCI W KONSTRUKCJI NAWIERZCHNI	12

	6.1.	ROZKŁADU TEMPERATURY W NAWIERZCHNI	112
	6.2.	WSTĘPNE ANALIZY WPŁYWY POŁOŻENIA WARSTWY O WYSOKIM MODULE SZTYWNOŚCI W	
	KON	ISTRUKCJI NAWIERZCHNI W PROGRAMIE VEROAD	121
	6.2.1.	Dane do obliczeń	121
	6.2.2.	WYNIKI OBLICZEŃ W VEROAD	127
	6.2.3.	Analiza wyników obliczeń	
	6.3.	LITERATURA	
_			
1	. OCE	NA STANU TECHNICZNEGO ODCINKOW DROG NA KTORYCH	
	ZAST	OSOWANO BETON ASFALTOWY O WYSOKIM MODULE SZTYWI	IOSCI
			136
	7.1.	ZEBRANIE DANYCH O ODCINKACH DRÓG NA KTÓRYCH ZASTOSOWANO BETON ASFALTOWY	0
	WYS	SOKIM MODULE SZTYWNOŚCI	
	7.1.1.	ANKIETY DOTYCZĄCE ZASTOSOWANIA BETONÓW ASFALTOWYCH O WYSOKIM MODULE SZT	YWNOŚCI
		136	
	7.1.2.	INFORMACJE UZYSKANE Z PRAC WŁASNYCH KATEDRY INŻYNIERII DROGOWEJ POLITECHNI	KI
	GD/	AŃSKIEJ	140
	7.1.3.	ŹRÓDŁA POZOSTAŁE	140
	7.2.	ZESTAWIENIE DANYCH O ODCINKACH DRÓG NA KTÓRYCH ZASTOSOWANO BETON ASFALTO	WY O
	WYS	SOKIM MODULE SZTYWNOŚCI	140
	7.3.	ODCINKI WYTYPOWANE DO OCENY STANU TECHNICZNEGO	
	7.4.	OCENA STANU TECHNICZNEGO ODCINKÓW DRÓG W 2012 R.	141
	7.4.1.	METODOLOGIA OCENY STANU TECHNICZNEGO ODCINKÓW	142
	7.4.2.	WOJEWÓDZTWO DOLNOŚLĄSKIE	153
	7.4.2.1	AUTOSTRADA NR 8 ODCINEK AUTOSTRADOWA OBWODNICA WROCŁAWIA	153
	7.4.2.2	DROGA EKSPRESOWA NR 8 ODCINEK WĘZEŁ PAWŁOWICE – WĘZEŁ DĄBROWA	154
	7.4.2.3	DROGA EKSPRESOWA NR 8 ODCINEK WĘZEŁ CIEŚLE – WĘZEŁ SYCÓW WSCHÓD	155
	7.4.2.4	DROGA KRAJOWA NR 5 ODCINEK KOSTOMŁOTY – STRZEGOM	155
	7.4.2.5	. Droga Krajowa nr 35 odcinek Obwodnica Tyńca	155
	7.4.2.6	. Droga Krajowa nr 46 odcinek Kłodzko – Podzamek	157
	7.4.2.7	. Droga Krajowa nr 46 odcinek Podzamek – granica województwa	158
	7.4.3.	WOJEWÓDZTWO OPOLSKIE	161
	7.4.3.1	. Droga Krajowa nr 41 odcinek Prudnik – granica państwa	161
	7.4.3.2	. Droga Krajowa nr 45 odcinek Boguszyce – Winów	162
	7.4.3.3	. Droga Powiatowa nr 20020 ul. Piastowska w Opolu	163
	7.4.4.	Województwo Podlaskie	164
	7.4.4.1	DROGA EKSPRESOWA NR 8 ODCINEK JEŻEWO – BIAŁYSTOK	164
	7.4.4.2	DROGA EKSPRESOWA NR 8 ODCINEK OBWODNICA ZAMBROWA	
	7.4.4.3	DROGA KRAJOWA NR 8 ODCINEK SZTABIN – KOLNICA	
	7.4.4.4	DROGA KRAJOWA NR 8 ODCINEK BIAŁYSTOK – KATRYNKA	170
	7.4.4.5	DROGA KRAJOWA NR 19 ODCINEK OBWODNICA WASILKOWA	
	7.4.5.		
	7.4.5.1	DROGA WOJEWÓDZKA NR 468 ODCINEK AL. ZWYCIESTWA W GDAŃSKU	
	7.4.5.2	DROGA KRAJOWA NR 7 ODCINEK UL. PODWALE PRZEDMIEJSKIE W GDAŃSKU	
	7.4.6.	WOJEWÓDZTWO WIELKOPOLSKIE	
	7.4.6.1	AUTOSTRADA NR 2 ODCINEK KOMORNIKI – KRZESINY	
	7.4.6.2	AUTOSTRADA NR 2 ODCINEK KOMORNIKI – NOWY TOMYŚL	
	7.4.6.3	AUTOSTRADA NR 2 ODCINEK KONIN – KOŁO – DABIF	
	7.4.6.4	. Droga Ekspresowa nr 5 odcinek Wschodnia Obwodnica Poznania	
	7.4.6.5	. Droga Ekspresowa nr 5 odcinek Kaczkowo – Korzeńsko	

7.4.6.6.	Droga Ekspresowa nr 11 odcinek Zachodnia Obwodnica Poznania	182
7.4.6.7.	Droga Ekspresowa nr 11 odcinek Poznań – Kurnik	182
7.4.6.8.	DROGA EKSPRESOWA NR 11 ODCINEK OBWODNICA OSTROWA WIELKOPOLSKIEGO	183
7.4.6.9.	Droga Krajowa nr 5 odcinek Obwodnica Poznania	184
7.4.6.10.	Droga Krajowa nr 15 odcinek Obwodnica Gniezna	186
7.4.6.11.	Droga Krajowa nr 92 odcinek Grońsko	188
7.4.6.12.	Droga Krajowa nr 92 odcinek Iwno – Starczanowo	189
7.4.6.13.	Droga Krajowa nr 92 odcinek Starczanowo – Września	190
7.4.6.14.	DROGA WOJEWÓDZKA NR 196 ODCINEK KOZIEGŁOWY/CZERWONAK	192
7.4.7. V	VOJEWÓDZTWO ZACHODNIOPOMORSKIE	195
7.4.7.1.	Droga Krajowa nr 10 odcinek Mirosławiec	195
7.5. F	ODSUMOWANIE OCENY STANU TECHNICZNEGO DRÓG W 2012 R	196
7.6. L	ITERATURA	199

1. Wstęp

1.1. Podstawa opracowania

Opracowanie niniejsze wykonano na zlecenie Generalnej Dyrekcji Dróg Krajowych i Autostrad w Warszawie w ramach umowy nr 3096/2011 z dnia 18.11.2011 r., wg harmonogramu dla etapu II.

1.2. Cel pracy

Beton asfaltowy o wysokim module sztywności jest coraz częściej stosowany w Polsce. Został opracowany w latach 80 XX wieku we Francji, gdzie klimat jest bardziej łagodny niż w Polsce. Stosowany jest też w m.in. w Wielkiej Brytanii, kraju o bardziej umiarkowanym klimacie niż w Polsce. Beton asfaltowy o wysokim module sztywności nazywany jest we Francji w skrócie AC-EME (od francuskiej nazwy "Enrobé a Module Éleve), natomiast w Polsce nazywany jest w skrócie AC-WMS.

Intensywne prace badawcze nad przystosowaniem mieszanek mineralnoasfaltowych o wysokim module sztywności do warunków lokalnych były prowadzone także w Belgii oraz Danii. Specyfika klimatyczna tych krajów zmniejsza problem występowania spękań niskotemperaturowych. Duży nacisk kładzie natomiast na odporność na deformacje trwałe.

Lokalizacja Polski na terenie środkowej Europy warunkuje większy wpływ klimatu kontynentalnego, co uzasadnia obawy z jednej strony o możliwość powstawania spękań niskotemperaturowych w okresie zimowym w nawierzchniach z zastosowaniem betonu asfaltowego o wysokim module sztywności. Z drugiej strony, ze względu na dość wysokie temperatury w okresie letnim, uzasadnione jest określenie odporności tych mieszanek na powstawanie deformacji trwałych.

1.3. Zakres pracy

1.3.1. Zakres całej kilkuetapowej pracy badawczej

Praca została podzielona na cztery etapy, a w zakres każdego etapu wchodzą: Etap I (zakończony w grudniu 2011 roku)

1. Prace wstępne. Przegląd literatury dotyczącej zagadnienia.

<u>Etap II (wykonany w 2012 roku) – niniejszy raport jest sprawozdaniem z realizacji II etapu prac</u>

- 1. Badania cech reologicznych betonu asfaltowego o wysokim module sztywności w warunkach niskich temperatur zimowych. Wyznaczenie parametrów modelu Burgers'a. Ocena wpływu rodzaju asfaltu (asfalt zwykły, modyfikowany oraz wielorodzajowy) na uzyskane parametry reologiczne.
- 2. Badania cech reologicznych betonu asfaltowego o wysokim module sztywności i porównawczo o normalnym module sztywności w warunkach wyższych temperatur przy wykorzystaniu metody pełzania oraz metody

dynamicznej. Opracowanie metodyki badań. Wyznaczenie parametrów modelu Burgersa, cz. 1

- 3. Analiza rozciągających naprężeń termicznych powstających w warunkach zimowych w konstrukcji nawierzchni, cz. 1.
- 4. Analiza wpływu położenia warstwy o wysokim module sztywności w konstrukcji nawierzchni. Ocena wpływu grubości warstw zwykłych mieszanek mineralno-asfaltowych zlokalizowanych powyżej warstwy o wysokim module sztywności.
- 5. Analiza konstrukcji nawierzchni w warunkach wyższych temperatur. Zastosowanie programu opartego o teorię lepko-sprężystości VEROAD, cz. 1
- 6. Ocena stanu technicznego odcinków dróg, w których zastosowano beton asfaltowy o wysokim module sztywności. Zebranie informacji o odcinkach, wstępne badania terenowe i laboratoryjne, cz. 1

Etap III (przewidziany do realizacji w 2013 roku)

- 1. Badania cech reologicznych betonu asfaltowego o wysokim module sztywności i porównawczo o normalnym module sztywności w warunkach wyższych temperatur przy wykorzystaniu metody pełzania oraz metody dynamicznej. Wyznaczenie parametrów modelu Burgersa, cz. 2
- 2. Analiza konstrukcji nawierzchni w warunkach wyższych temperatur. Zastosowanie programu opartego o teorię lepko-sprężystości VEROAD, cz. 2
- 3. Analiza rozciągających naprężeń termicznych powstających w warunkach zimowych w konstrukcji nawierzchni, cz. 2
- 4. Ocena stanu technicznego odcinków dróg, w których zastosowano beton asfaltowy o wysokim module sztywności, przy wykorzystaniu ugięciomierza FWD oraz badań laboratoryjnych próbek odwierconych z analizowanych odcinków.
- 5. Analiza wpływu ruchu drogowego, klimatu, zastosowanej metody projektowania oraz miejsca wbudowania betonu asfaltowego o wysokim module sztywności na stan techniczny danej drogi, cz. 1.

Etap IV (przewidziany do realizacji w 2014 roku)

- 1. Analiza wpływu ruchu drogowego, klimatu, zastosowanej metody projektowania oraz miejsca wbudowania betonu asfaltowego o wysokim module sztywności na stan techniczny danej drogi, cz. 2.
- Ocena stanu technicznego istniejących odcinków dróg, w których zastosowano beton asfaltowy o wysokim module sztywności. Podsumowanie oceny, cz. 3
- 3. Przygotowanie raportu końcowego, podsumowanie przeprowadzonych badań i analiz.

1.3.2. Zakres II etapu pracy badawczej

Niniejsze opracowanie składa się z siedmiu rozdziałów. Zawiera ono sprawozdanie z prac badawczych wykonanych w 2012 roku.

Rozdział 1 jest wstępem do sprawozdania z II etapu pracy badawczej. Zawiera zakres prac wykonywanych w poszczególnych etapach oraz szczegółowy zakres etapu obecnego.

Rozdział 2 zatytułowany "Badania cech reologicznych betonów asfaltowych o wysokim module sztywności w niskich temperaturach" przedstawia metodykę wyznaczania cech reologicznych betonu asfaltowego o wysokim module sztywności w warunkach niskich temperatur zimowych. Przedstawiony jest wybór schematu badania, sposób przygotowania próbek oraz wykonania samego badania. Przedstawiono także sposób wyznaczania parametrów reologicznych dla wybranych modeli reologicznych.

Badania zostały wykonane dla następujących mieszanek mineralno-asfaltowych o wysokim module sztywności:

- AC WMS 16 z asfaltem zwykłym 20/30
- AC WMS 16 z asfaltem modyfikowanym 10/40-65
- AC WMS 16 z asfaltem modyfikowanym 25/55-60
- AC WMS 16 z asfaltem wielorodzajowym 20/30

oraz porównawczo:

- AC 16 W z asfaltem zwykłym 35/50
- AC 16 W z asfaltem zwykłym 50/70
- AC 22 P z asfaltem zwykłym 35/50

Rozdział 3 zatytułowany "Badania cech reologicznych betonów asfaltowych o wysokim module sztywności w wysokich temperaturach" przedstawia metodykę wyznaczania cech reologicznych betonu asfaltowego o wysokim module sztywności w warunkach podwyższonych temperatur letnich. Badania w celu wyznaczenia cech reologicznych betonów asfaltowych przeprowadzono w 2 schematach: pełzania statycznego oraz metodą dynamiczną. W rozdziale przedstawiono wybór schematów badań, sposób przygotowania próbek, sposób wykonania samego badania oraz wpływ wysokości badanej próbki na wyznaczone parametry reologiczne (w przypadku zastosowanej metody pełzania statycznego),. a także sposób wyznaczania parametrów reologicznych dla wybranego modelu reologicznego.

Badania zostały wykonane dla tych samych mieszanek mineralno-asfaltowych, które zostały wymienione w badaniach w niskich temperaturach (rozdział 2), oprócz jednej mieszanki: AC WMS 16 z asfaltem modyfikowanym 10/40-65.

Rozdział 4 zatytułowany "**Analiza rozciągających naprężeń termicznych**" przedstawia problem powstawania spękań termicznych w nawierzchniach asfaltowych. Omówiono mechanizm powstawania spękań termicznych. Obliczenia naprężeń termicznych wykonano w oparciu o badania cech betonów asfaltowych pobranych z wybranych dróg, na których wbudowano betony asfaltowe o wysokim module sztywności.

Rozdział 5 zatytułowany "Analiza konstrukcji nawierzchni w warunkach podwyższonych temperatur z wykorzystaniem programu VEROAD" przedstawia analizę wpływu zastosowania poszczególnych betonów asfaltowych na powstawanie deformacji trwałych w nawierzchni. Obliczenia zostały wykonane w oparciu o teorię liniowej lepko-sprężystości z wykorzystaniem modelu Burgers'a. Podstawowe schematy konstrukcji wybrano w oparciu o typowe rozwiązania konstrukcji nawierzchni z betonami asfaltowymi o wysokim module sztywności stosowane w Polsce.

Rozdział 6 zatytułowany "Analiza wpływu położenia warstwy o wysokim module sztywności w konstrukcji nawierzchni" przedstawia przyjęcie wstępnych założeń do analizy wpływu położenia warstwy lub pakietu warstw o wysokim module sztywności na zachowanie się mieszanek w niskich temperaturach zimowych oraz w wysokich temperaturach letnich. Opisano przyjęcie rozkładu temperatury w nawierzchni oraz wykonano wstępne obliczenia w oparciu o model lepko-sprężysty Burgers'a w programie VEROAD dla wysokich temperatur letnich.

Rozdział 7 zatytułowany "**Ocena stanu technicznego odcinków dróg na których zastosowano beton asfaltowy o wysokim module sztywności**" przedstawia przegląd stanu nawierzchni odcinków dróg na których zastosowano beton asfaltowy o wysokim module sztywności. Przedstawiono informacje o odcinkach uzyskanych na podstawie ankiet skierowanych do ponad 70 Zarządców Dróg krajowych, wojewódzkich oraz Zarządców Dróg w miastach o liczbie mieszkańców większej od 100 000 osób. Opisano metodykę oceny stanu technicznego dróg na podstawie wytycznych polskich, amerykańskich i europejskich. Spośród wszystkich odcinków do dalszej analizy wybrano odcinki położone w 6 województwach o zróżnicowanych warunkach zarówno klimatycznych jak i charakterze obciążenia ruchem. Odcinki zostały zróżnicowane także na podstawie wbudowanych mieszanek mineralno-asfaltowych. Raport przedstawia ocenę stanu technicznego odcinków dróg ocenionych do dnia 30.08.2012 r.

Niniejszy raport jest przejściowy. Dlatego na końcu tego raportu nie podano uogólniających wniosków.

2. Badania cech reologicznych betonów asfaltowych o wysokim module sztywności w niskich temperaturach

2.1. Badanie zginania ze stałą prędkością deformacji

2.1.1. Przygotowanie próbek

Próbki do badań zostały zagęszczone przy użyciu laboratoryjnej zagęszczarki hydraulicznej w formie płyt o wymiarach 300x300x50 mm. Następnie zostały pocięte przy pomocy piły na próbki belkowe o wymiarach 50x50x300 mm. Schemat uzyskania próbek belkowych z próbki płytowej przedstawiono na rysunku 2.1

Rysunek 2.1 Schemat przygotowania próbek belkowych

2.1.2. Metodyka badania zginania ze stałą prędkością deformacji

Badanie zginania próbek ze stałą prędkością deformacji polegało na zastosowaniu schematu statycznego belki wolnopodpartej obciążonej siłą skupioną w środku rozpiętości, mierzoną dwoma czujnikami indukcyjnymi i wywołującą stały wzrost ugięć w czasie. W skład zestawu do badania zginania wchodziła prasa o przemieszczeniu wynoszącym 1,25 mm/min. Badanie wykonuje się w zakresie temperatur od 0°C do - 40°C. Bezpośrednio przed badaniem wszystkie próbki przechowywano w komorze termostatycznej przez minimum 12 godzin. Schemat statyczny badania pokazano na rysunku 2.2.

Rysunek 2.2 Schemat statyczny oraz widok próbki w badaniu metodą zginania ze stałą prędkością deformacji

W każdej serii badano po 3 do 5 próbek. Określano następujące parametry:

- Odkształcenie graniczne przy zginaniu.
- Wytrzymałość na rozciąganie przy zginaniu.

• Moduł sztywności przy zginaniu.

Odkształcenie występujące na spodzie zginanej belki określono na podstawie następującej zależności:

$$\varepsilon_{gr} = \frac{p_{\max}}{e} \cdot \frac{c}{c+a}$$
(2.1)

gdzie:

*ε*_{gr} - odkształcenie graniczne w chwili zniszczenia próbki lub osiągnięcia maksymalnej wartości naprężenia,

p_{max} - przemieszczenie czujnika LVDT przy maksymalnej sile F_{max} [mm],

e - długość bazy pomiarowej [mm],

c - połowa wysokości próbki [mm],

a - odległość od spodu próbki do osi czujnika LVDT [mm].

Naprężenie występujące na spodzie próbki w środku jej rozpiętości określono na podstawie następującej zależności:

$$\sigma = \frac{3Fl}{2bh^2} \tag{2.2}$$

gdzie:

σ - naprężenie występujące na spodzie próbki w środku jej rozpiętości [MPa],

F - siła mierzona w dowolnej chwili obciążenia próbki przed zniszczeniem [kN],

rozpiętość próbki między podporami [mm], I = const. = 260 mm,

b - szerokość próbki [mm],

h - wysokość próbki [mm].

Wytrzymałość próbki obliczano z następującego wzoru:

$$R_{zg} = \frac{3F_{\max}l}{2bh^2}$$
(2.3)

gdzie:

R_{zg} - wytrzymałość na rozciąganie przy zginaniu [MPa],

F_{max} - siła zmierzona w chwili zniszczenia próbki lub przy osiągnięciu maksymalnej wartości [kN].

Moduł sztywności przy zginaniu określano w oparciu o wykresy zależności naprężenia od odkształcenia jako styczną do krzywej pełzania dla odkształcenia ε=0. Wykorzystano następującą zależność:

$$S = \frac{\Delta\sigma}{\Delta\varepsilon}$$
(2.4)

gdzie:

- S moduł sztywności przy zginaniu [MPa],
- $\Delta \sigma$ przyrost naprężenia,
- $\Delta \epsilon$ przyrost odkształcenia.

Interpretacja wyników badań:

Analizując wyniki badań mieszanek mineralno-asfaltowych metodą zginania ze stałą prędkością deformacji, lepszą odporność na spękania niskotemperaturowe ma mieszanka, która charakteryzuje się:

- Lepszą odkształcalnością, czyli wyższymi uzyskanymi wartościami odkształcenia granicznego, ε_{gr} = max (ε_{gr})_i.
- Wyższymi uzyskanymi wartościami wytrzymałości na rozciąganie przy zginaniu, R_{zg} = max (R_{zg})_i.
- Niższymi wartościami modułu sztywności przy zginaniu, E = min (E)_i.

2.1.3. Wyniki badań zginania ze stałą prędkością deformacji

Badania zginania ze stałą prędkością deformacji betonów asfaltowych o wysokim module sztywności wykonywane były na Politechnice Gdańskiej w latach 2009-2012. Część badań będzie uzupełniona na początku roku 2013. Wyniki otrzymane w odpowiednich okresach zostały przedstawione poniżej.

2.1.3.1. Wyniki badań uzyskane w roku 2009

Badania zginania ze stałą prędkością deformacji były wykonywane w ramach pracy magisterskiej Jaczewskiego [2.2]. Wykonano badania dla czterech betonów asfaltowych o wysokim module sztywności oraz dla jednego betonu asfaltowego do warstwy wiążącej (mieszanka porównawcza). W każdym z badań określano: wytrzymałość na rozciąganie przy zginaniu R_{zg} , odkształcenie graniczne ε_{gr} oraz moduł sztywności mieszanki (styczny E_0 oraz sieczny E_1). Badania zginania ze stałą prędkością deformacji były wykonywane w następujących temperaturach: -10°C, -20°C, -30°C oraz -40°C. W przypadku gdy stwierdzono zamarznięcie czujnika w danej temperaturze, wynik badania był odrzucany. Wyniki dla poszczególnych mieszanek przedstawiono w następujących tablicach:

- Beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 20/30 (zawartość asfaltu 5,2%) – tablica 2.1
- Beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 20/30 (zawartość asfaltu 6,2%) – tablica 2.2
- Beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem modyfikowanym 10/40-65 (zawartość asfaltu 5,2%) – tablica 2.3
- Beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem modyfikowanym 10/40-65 (zawartość asfaltu 6,2%) – tablica 2.4
- Beton asfaltowy do warstwy wiążącej AC 16W z asfaltem zwykłym 35/50 (zawartość asfaltu 4,8%) – tablica 2.5

Tablica 2.1 Wyniki badań zginania ze stałą prędkością deformacji dla betonu asfaltowego o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 20/30 (zawartość asfaltu 5,2%)

Temperatura	Nr próbki	R _{zg}	ε _{gr}	Eo	E1
	49/1/4	6,38	0,540	11626	10374
- 10°C	49/1/5	6,61	0,464	15673	10251
	49/2/1	6,51	0,559	13358	10284
średnia		6,56	0,521	13552	10303
- 20°C	49/2/2	6,30	0,439	21587	13377

	49/2/3	6,63	0,414	16553	12512
	49/2/4	5,86	0,415	14336	11237
śrec	dnia	6,26	0,423	17492	12375
	49/2/5	5,62	0,562	12558	11036
- 30°C	49/3/1	6,10	0,564	14275	12292
	49/3/2	6,90	0,708	21944	17052
śrec	dnia	6,21	0,611	16259	13460
	49/1/1	6,66	0,082	85075	45829
- 40°C	49/1/2	6,92	0,689	17177	17177
	49/1/3	5,58	0,577	23524	17991
średnia		6,39	0,633	20350	17584

<u>UWAGA:</u> W próbce 49/1/1 wyniki zostały odrzucone ze względu na zamarznięcie czujnika przemieszczenia podczas badania.

Tablica 2.2 Wyniki badań zginania ze stałą prędkością deformacji dla betonu asfaltowego o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 20/30 (zawartość asfaltu 6,2%)

Temperatura	Nr próbki	R _{zg}	٤ _{gr}	E ₀	E ₁
	79/2/1	7,43	0,585	13338	11135
- 10°C	79/2/2	7,18	0,540	14577	11147
	79/2/3	7,64	0,657	11248	10110
śrec	Inia	7,42	0,594	13054	10797
	79/3/1	8,04	0,397	31245	15448
- 20°C	79/3/2	8,79	0,473	19069	14856
	79/3/3	7,85	0,418	23207	23207
śrec	Inia	8,23	0,429	24507	17837
	79/4/1	7,52	0,323	31496	20500
- 30°C	79/4/2	7,22	0,539	22087	14391
	79/4/3	7,71	0,180	27835	23366
śrec	Inia	7,48	0,431	26792	17446
- 40°C	79/1/1	6,73	0,434	15663	14770
	79/1/2	6,14	0,537	16806	16806
	79/1/3	6,72	0,438	26415	16262
śrec	Inia	6,53	0,470	19628	15946

<u>UWAGA:</u> W próbce 79/4/3 wyniki zostały odrzucone ze względu na zamarznięcie czujnika przemieszczenia podczas badania.

Tablica 2.3 Wyniki badań zginania ze stałą prędkością deformacji dla betonu asfaltowego o wysokim module sztywności AC WMS 16W z asfaltem modyfikowanym 10/40-65 (zawartość asfaltu 5,2%)

Temperatura	Nr próbki	R _{zg}	٤ _{gr}	E ₀	E ₁
	34/2/1	9,47	1,647	9865	7996
- 10°C	34/2/2	8,05	1,172	9987	8316
	34/2/3	8,06	1,112	9248	7783

średnia		8,53	1,310	9700	8032
	34/3/1	10,00	0,720	18570	12954
- 20°C	34/3/2	7,83	0,512	17524	13144
	34/3/3	7,32	0,542	18589	12247
śrec	dnia	8,38	0,591	18228	12782
	34/4/1	8,01	0,498	19791	13256
- 30°C	34/4/2	8,82	0,638	14184	13126
	34/4/3	10,05	0,268	40353	23676
śrec	dnia	8,96	0,568	16988	13191
	34/1/1	7,47	0,403	20694	16251
- 40°C	34/1/2	7,77	0,405	18444	15095
	34/1/3	7,88	0,392	29240	17485
średnia		7,71	0,400	22793	16277

<u>UWAGA:</u> W próbce 34/4/3 wyniki zostały odrzucone ze względu na zamarznięcie czujnika przemieszczenia podczas badania.

Tablica 2.4 Wyniki badań zginania ze stałą prędkością deformacji dla betonu asfaltowego o wysokim module sztywności AC WMS 16W z asfaltem modyfikowanym 10/40-65 (zawartość asfaltu 6,2%)

Temperatura	Nr próbki	R _{zg}	٤ _{gr}	Eo	E1
	78/2/1	9,36	2,027	20227	6701
- 10°C	78/2/2	10,18	1,491	12510	7694
	78/2/3	11,65	2,074	13592	7750
śrec	Inia	10,40	1,864	15443	7382
	78/3/1	10,02	0,690	17871	12017
- 20°C	78/3/2	10,83	0,809	21586	14187
	78/3/3	10,40	0,820	14315	11839
śrec	Inia	10,42	0,773	17924	12681
	78/4/1	9,18	1,073	29515	14071
- 30°C	78/4/2	10,00	0,535	20156	13525
	78/4/3	9,11	0,596	21002	17256
śrec	Inia	9,43	0,735	23558	14951
- 40°C	78/1/1	7,69	0,669	18615	14631
	78/1/2	8,91	0,579	16818	15144
	78/1/3	8,41	0,709	24101	17128
średnia		8,34	0,652	19845	15634

Tablica 2.5 Wyniki badań zginania ze stałą prędkością deformacji dla betonu asfaltowego do warstwy wiążącej AC 16W z asfaltem zwykłym 35/50

Temperatura	Nr próbki	R _{zg}	٤ _{gr}	E ₀	E ₁
- 10°C	35/2/1	7,58	1,346	15394	11022
	35/2/2	6,66	0,623	14901	9807
	35/2/3	6,51	0,842	19308	11035
średnia		6,92	0,937	16534	10621

	35/3/1	6,83	0,391	16775	13612
- 20°C	35/3/2	6,86	0,405	13809	11301
	35/3/3	5,82	0,333	18132	13981
śrec	dnia	6,50	0,376	16239	12965
	35/4/1	6,78	0,216	18100	13199
- 30°C	35/4/2	6,30	0,655	23670	16135
	35/4/3	6,67	0,796	18950	13857
śrec	dnia	6,58	0,556	20240	14397
	35/1/1	5,21	0,266	22208	13239
- 40°C	35/1/2	5,76	0,289	20214	15757
	35/1/3	4,57	0,249	17850	14554
średnia		5,18	0,268	20091	14517

2.1.3.2. Wyniki badań uzyskane w roku 2012

W roku 2012 badania zginania ze stałą prędkością deformacji zostały wykonane w temperaturach: 0°C, - 10°C, - 20°C oraz - 30°C dla 3 mieszanek betonu asfaltowego o wysokim module sztywności oraz dla 3 mieszanek porównawczych (beton asfaltowy do warstwy wiążącej oraz warstwy podbudowy).. Wyniki dla poszczególnych mieszanek przedstawiono w następujących tablicach:

- Beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 20/30 – tablica 2.6
- Beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem modyfikowanym 25/55-60 – tablica 2.7
- Beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem wielorodzajowym 20/30 – tablica 2.8
- Beton asfaltowy do warstwy wiążącej AC 16W z asfaltem zwykłym 35/50 tablica 2.9
- Beton asfaltowy do warstwy wiążącej AC 16W z asfaltem zwykłym 50/70 tablica 2.10
- Beton asfaltowy do warstwy podbudowy AC 22P z asfaltem zwykłym 35/50 tablica 2.11

Tablica 2.6 Wyniki badań zginania ze stałą prędkością deformacji dla betonu asfaltowego o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 20/30

Temperatura	Nr próbki	R _{zg}	ε _{gr}	Eo	E ₁
Temperatura Nr próbki R 938/1 8,8 938/2 7,5 0°C 938/3 8,6 938/3 8,6 938/4 9,8 938/5 8,6 938/5 8,6 938/6 7,2 938/7 8,2 938/8 7,3 938/9 7,4	938/1	8,825	2,092	8826	4118
	7,539	1,577	7547	4709	
0°C	938/3	8,645	1,987	7547	4340
	938/4	9,824	3,680	7062	2636
	938/5	8,616	3,221	6260	2617
śrec	Inia	8,690	2,511	7448	3684
0°C śre - 10°C	938/6	7,256	1,080	7920	7446
1000	938/7	8,204	0,890	12237	10020
- 10°C	938/8	7,351	0,930	9149	8060
	938/9	7,416	1,017	11667	8035

	938/10	6,658	0,977	8907	7398
śrec	dnia	7,377	0,979	9976	8192
	938/11	7,530	0,771	11881	10179
średnia 7,377 0,97 938/11 7,530 0,77 938/12 7,099 0,80 938/13 6,846 0,65 938/14 8,326 0,81 938/15 4,728 0,47 \$rednia 6,906 0,70 \$938/17 5,781 0,68 \$938/18 6,118 0,58 \$938/19 6,910 0,80	0,805	11611	10052		
- 20°C	938/13	6,846	0,977 8907 0,979 9976 0,771 11881 0,805 11611 0,656 11132 0,812 12904 0,474 15532 0,704 12612 0,739 10181 0,685 12578 0,585 11785 0,805 11944 0,539 12850 0,671 11868	10752	
	938/14	8,326	0,812	12904	11095
	938/15	4,728	0,474	15532	11784
śrec	dnia	6,906	0,704	12612	10772
	938/16	6,537	0,739	10181	9595
	938/17	5,781	0,685	8907 9976 11881 11611 1132 12904 15532 12612 10181 12578 11785 11944 12850 11868	9098
- 30°C	938/18	3/10 6,658 0,977 8907 7,377 0,979 9976 3/11 7,530 0,771 11881 3/12 7,099 0,805 11611 3/13 6,846 0,656 11132 3/14 8,326 0,812 12904 3/15 4,728 0,474 15532 6,906 0,704 12612 3/16 6,537 0,739 10181 3/17 5,781 0,685 12578 3/18 6,118 0,585 11785 3/19 6,910 0,805 11944 3/20 6,131 0,539 12850 6,295 0,671 11868 11868	10611		
- 20°C śrec - 30°C	938/19	6,910	0,805	11944	9106
	938/20	6,131	0,539	12850	12555
śrec	dnia	6,295	0,671	11868	10193

Tablica 2.7 Wyniki badań zginania ze stałą prędkością deformacji dla betonu asfaltowego o wysokim module sztywności AC WMS 16W z asfaltem modyfikowanym 25/55-60

Temperatura	Nr próbki	R _{zg}	ε _{gr}	Eo	E1
	944/1	7,315	5,415	4428	1320
Temperatura 0°C - 10°C - 20°C - 20°C - 30°C	944/2	7,076	5,828	3697	1139
	944/3	7,363	7,899	3782	959
	944/4	8,150	7,442	3251	1077
	944/5	6,963	6,274	3692	1086
śrec	Inia	7,373	6,572	3770	1116
	944/6	8,730	2,120	7519	4244
	944/7	8,494	2,286	6023	3676
- 10°C	944/8	8,080	1,644	6662	4931
	944/9	7,706	1,463	8097	5346
	944/10	7,425	1,589	6912	4692
śrec	Inia	8,087	1,820	7043	4578
	944/11	8,462	0,979	9186	10483
Sree	944/12	9,443	1,291	8952	7408
- 20°C	944/13	9,287	0,870	10468	11713
	944/14	R_{zg} ϵ_{gr} E_0 7,3155,41544287,0765,82836977,3637,89937828,1507,44232516,9636,27436927,3736,57237708,7302,12075198,4942,28660238,0801,64466627,7061,46380977,4251,58969128,0871,82070438,4620,97991869,4431,29189529,2870,870104686,4880,77883825,7470,555109177,8850,89595817,6160,605162288,1830,758112777,4270,599136978,7270,848181417,3770,581156907,8660,67815007	9336		
śrec - 20°C	944/15	5,747	0,555	10917	11655
śrec	Inia	7,885	0,895	9581	10119
	944/16	7,616	0,605	16228	14617
	944/17	8,183	0,758	11277	12944
- 30°C	944/18	7,427	0,599	13697	13069
	944/19	8,727	0,848	18141	13185
<u>śrec</u> - 20°C <u>śrec</u> - 30°C	944/20	7,377	0,581	15690	15286
śrec	Inia	7,866	0,678	15007	13820

Tablica 2.8 Wyniki badań zginania ze stałą prędkością deformacji dla betonu asfaltowego o wysokim module sztywności AC WMS 16W z asfaltem wielorodzajowym 20/30

Temperatura	Nr próbki	R _{zg}	ε _{gr}	E ₀	E ₁
	955/1	4,690	4,432	2565	1009
	955/2	4,664	4,793	2318	930
0°C	955/3	4,667	5,071	2856	876
Temperatura 0°C - 10°C - 10°C - 20°C - 20°C - 30°C	955/4	5,243	3,987	3099	1196
	955/5	4,395	3,967	2340	1037
śrec	Inia	4,732	4,450	2636	1010
	955/6	7,404	3,597	4885	2070
	955/7	8,343	3,424	5499	2360
- 10°C	955/8	7,746	3,720	5288	2025
- 10°C	955/9	8,060	2,732	5077	2926
	955/10	7,037	2,447	5762	2872
śrec	Inia	7,718	3,184	5302	2451
	955/11	8,851	1,414	7961	6539
	955/12	8,954	1,169	9342	8534
- 20°C	955/13	10,076	1,418	10392	7186
	955/14	9,219	1,369	9916	7328
0°C 5rec - 10°C - 20°C 5rec - 30°C 5rec	955/15	9,214	1,443	10460	6593
śrec	Inia	9,263	1,363	9614	7236
	955/16	7,903	0,813	7583	10818
	955/17	8,475	0,811	9696	10873
0°C - 10°C - 20°C - 20°C - 30°C śrec - 30°C	955/18	8,015	0,895	10677	9360
	955/19	9,007	0,807	13698	12442
	955/20	8,154	0,852	11963	10232
śrec	Inia	8,311	0,836	10723	10745

Tablica 2.9 Wyniki badań zginania ze stałą prędkością deformacji dla betonu asfaltowego do warstwy wiążącej AC 16W z asfaltem zwykłym 35/50

Temperatura	Nr próbki	R _{zg}	٤ _{gr}	Eo	E1
	926/1	4,339	6,707	3072	619
	926/2	5,776	4,253	4701	1317
0°C	926/3	5,665	5,650	5567	977
	926/4	5,532	5,746	4014	947
0°C śrec - 10°C	926/5	4,961	5,837	3973	817
śrec	Inia	5,255	5,639	4265 935	
	926/6	4,739	1,119	6733	4289
	926/7	6,328	1,560	8419	4098
- 10°C	926/8	6,673	1,523	7805	4426
	926/9	8,139	1,355	6688	6102
	926/10	6,473	1,525	7213	4285
śrec	Inia	6,470	1,416	7372	4640

	926/11	6,365	0,776	9802	8565
	926/12	7,827	0,659	11317	12207
- 20°C śrea - 30°C	926/13	7,232	0,641	15463	11705
	926/14	926/11 6,365 0,776 9802 926/12 7,827 0,659 11317 926/13 7,232 0,641 15463 926/14 7,196 0,753 11776 926/15 7,280 0,722 3195 926/15 7,280 0,710 10311 926/16 7,916 0,668 11740 926/17 7,403 0,857 8538 926/18 7,880 0,695 17549 926/19 7,267 0,812 10442 926/20 5,368 0,726 10645	9725		
	926/15	7,280	0,722	3195	10085
śrec	dnia	7,180	0,710	10311	10457
	926/16	7,916	0,668	11740	12345
	926/17	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9638		
- 30°C	926/18	7,880	5,3650,77698027,8270,659113177,2320,641154637,1960,753117767,2800,72231957,1800,710103117,9160,668117407,4030,85785387,8800,695175497,2670,812104425,3680,726106457,1670,75211783	11627	
	926/12 7,827 0,659 11317 926/13 7,232 0,641 15463 926/14 7,196 0,753 11776 926/15 7,280 0,722 3195 średnia 7,180 0,710 10311 926/17 7,403 0,857 8538 926/18 7,880 0,695 17549 926/19 7,267 0,812 10442 926/20 5,368 0,726 10645	9454			
	926/20	5,368	0,726	10645	8434
śrec	Inia	7,167	0,752	11783	10300

Tablica 2.10 Wyniki badań zginania ze stałą prędkością deformacji dla betonu asfaltowego do warstwy wiążącej AC 16W z asfaltem zwykłym 50/70

Temperatura	Nr próbki	R _{zg}	٤ _{gr}	Eo	E1
	935/1	5,073	8,063	2426	591
	935/2	5,338	7,212	2775	716
<u>Temperatura</u> 0°C - 10°C - 10°C - 20°C - 20°C - 30°C	935/3	5,719	5,744	3723	969
	935/4	6,424	6,198	4397	993
	935/5	5,341	7,923	2956	633
śrec	Inia	5,579	7,028	3255	780
	935/6	5,164	1,099	6332	4851
	935/7	7,116	1,243	8672	5734
- 10°C	935/8	6,451	1,008	10095	6820
	935/9	7,299	1,125	7979	6743
	935/10	7,039	1,065	8081	6540
śrec	Inia	6,614	1,108	8232	6138
	935/11	6,275	0,890	9141	8807
	935/12	6,352	0,871	8359	7373
- 20°C	935/13	6,717	0,757	11314	9614
	935/14	7,130	0,662	13208	12419
0°C śred - 10°C - 20°C - 20°C śred - 30°C	935/15	5,837	0,540	9789	11352
śrec	Inia	6,462	0,744	10362	9913
	935/16	6,373	0,808	9393	10759
	935/17	0,521	0,093	46245	48802
0°C <u>śrec</u> - 10°C - 20°C <u>śrec</u> - 30°C	935/18	6,151	0,624	12643	10970
	935/19	6,499	0,691	9584	9947
	935/20	6,605	0,509	11900	13257
śrec	Inia	6,407	0,658	10880	11233

UWAGA: w próbce 935/17 wyniki badania zostały odrzucone ze względu na błędny odczyt z czujników.

Tablica 2.11 Wyniki badań zginania ze stałą prędkością deformacji dla betonu asfaltowego do warstwy podbudowy AC 22P z asfaltem zwykłym 35/50

Temperatura	Nr próbki	R _{zg}	ε _{gr}	E ₀	E1
	975/1	4,855	3,639	3454	1289
Temperatura 0°C - 10°C - 10°C - 20°C - 20°C - 30°C	975/2	7,880	4,322	3878	1817
	975/3	7,587	4,385	4736	1699
	975/4	8,177	4,633	5181	1718
	975/5	7,856	3,070	5038	2548
śrec	Inia	7,271	4,010	4457	1814
	975/6	7,641	1,014	9406	7693
	975/7	7,848	0,985	10938	8272
- 10°C	975/8	7,883	R_{zg} E_{gr} E_{0} 4,8553,63934547,8804,32238787,5874,38547368,1774,63351817,8563,07050387,2714,01044577,6411,01494067,8480,985109387,8830,993102777,5360,941106168,4800,969127287,8780,980107935,4950,62475095,8160,593134307,5260,605143577,2640,617126202,1120,47142245,6430,582104286,4690,509198438,6090,716289726,5190,521154926,9150,56719891	8009	
10 0	975/9	7,536	0,941	10616	8078
	975/10	8,480	0,969	12728	9278
śrec	Inia	7,878	0,980	10793	8266
	975/11	5,495	0,624	7509	9559
śrec - 20°C	975/12	5,816	0,593	13430	11233
- 20°C	975/13	7,526	0,605	14357	14157
	975/14	7,264	R_{2g} ϵ_{gr} E_0 4,8553,63934547,8804,32238787,5874,38547368,1774,63351817,8563,07050387,2714,01044577,6411,01494067,8480,985109387,8830,993102777,5360,941106168,4800,969127287,8780,980107935,4950,62475095,8160,593134307,5260,605143577,2640,617126202,1120,47142245,6430,582104286,4690,509198438,6090,716289726,5190,521154926,0620,521154926,9150,56719891	12958	
0°C śrec - 10°C - 20°C śrec - 30°C	975/15	2,112	0,471	4224	4879
śrec	Inia	5,643	0,582	10428	10557
	975/16	6,469	0,509	19843	17131
	975/17	8,609	0,716	28972	15260
- 30°C	975/18	6,519	0,522	14857	13455
	975/19				
- 10°C śrec - 20°C śrec - 30°C	975/20	6,062	0,521	15492	13506
śrec	Inia	6,915	0,567	19891	14838

UWAGA: w próbce 975/19 brak wyników ze względu na błędny odczyt czujnika

2.2. Badanie zginania przy stałym obciążeniu (creep test)

2.2.1. Przygotowanie próbek

Próbki do badań zostały przygotowane według metody podanej w punkcie 2.1.1.

2.2.2. Metodyka badania zginania przy stałym obciążeniu (creep test)

W badaniu zginania przy stałym obciążeniu podobnie jak w badaniu zginania ze stałą prędkością deformacji schematem statycznym była belka wolnopodparta obciążana stałą siłą skupioną w środku rozpiętości. Belkę obciążano w czasie 3600 s, a następnie odciążano w czasie 3600 s. Odkształcenia na spodzie belki rejestrowano w czasie obciążenia i po odciążeniu – łącznie przez 7200 sekund. Wielkość siły obciążającej dobierano dla każdej temperatury badania indywidualnie. Stosowano przy tym zasadę, że wywoływane od przyłożonej siły naprężenia w próbce nie powinny być większe od połowy wytrzymałości na rozciąganie przy zginaniu. Wartość odkształcenia próbek zginanych ze stałą wartością obciążenia wyznaczano w ten sam sposób jak w przypadku badania zginania ze stałą prędkością deformacji. Próbki kondycjonowano w komorze termostatycznej w temperaturze badania przez okres minimum 12 godzin. W jednej serii badano od 1 do 3 jednorodnych próbek.

Rysunek 2.3. Schemat statyczny i widok próbki w badaniu metodą zginania przy stałym obciążeniu (creep test)

Do analizy reologicznych właściwości badanych mieszanek mineralno-asfaltowych zastosowano model liniowo-lepkosprężysty Burgers'a. Konfiguracja podstawowych elementów tego modelu została pokazana na rysunku 2.4.

Rysunek 2.4. Schemat modelu Burgers'a

W badaniu ze stałym obciążeniem (creep test) naprężenie $\sigma(t)$ wynosi:

- σ_0 dla czasu obciążenia $0 \le t \le t_0$, gdzie czas t_0 oznacza czas w chwili odciążenia próbki,
- 0 dla czasu odciążenia t>t₀.

Równania charakteryzujące krzywą pełzania w modelu Burgers'a są następujące:

- dla obciążenia $0 \le t \le t_0$, przy $\sigma_0 = \text{const.}$
- -

$$\varepsilon(t) = \sigma_0 \left\{ \frac{1}{E_1} + \frac{t}{\eta_1} + \frac{1}{E_2} \left[1 - \exp\left(-\frac{t}{\lambda_2}\right) \right] \right\}$$
(2.5)

- dla odciążenia t>t₀, przy $\sigma_0 = 0$

-

$$\varepsilon(t) = \sigma_0 \left\{ \frac{t_0}{\eta_1} + \frac{1}{E_2} \exp\left(-\frac{t}{\lambda_2}\right) \left[\exp\left(\frac{t_0}{\lambda_2}\right) - 1 \right] \right\}$$
(2.6)

Gdzie:

- $\varepsilon(t)$ odkształcenie,
- σ_0 stałe naprężenie wywołane przyłożonym stałym obciążeniem, MPa,
- $E_1 i E_2$ moduły sprężystości, odpowiednio: E_1 moduł sprężystości natychmiastowej, i E_2 moduł sprężystości opóźnionej, MPa,

 $\eta_1 i \eta_2$ - współczynniki lepkości, odpowiednio: η_1 – lepkość płynięcia ustalonego, η_2 – lepkość opóźnienia sprężystego i η_2 =E₂· λ_2 , MPa·s,

 λ_2 – czas retardacji naprężeń, s.

Model Burgersa wykazuje sprężyste odkształcenie natychmiastowe $\epsilon_1 = \sigma_0/E_1$, opóźnienie sprężyste $\epsilon_2 = \sigma_0/E_2$ i lepkie płynięcie z prędkością σ_0/η_1 . Pierwsze dwa typy odkształceń są odwracalne, podczas gdy płynięcie lepkie jest nieodwracalne. Po zdjęciu obciążenia następuje natychmiastowy nawrót odkształceń, równy σ_0/E_1 . Odkształcenia trwałe przy długotrwałym wypoczynku materiału wynoszą $\epsilon_2 = \sigma_0 \cdot t_0/\eta_1$.

Kryteria oceny mieszanek mineralno-asfaltowych, z uwagi na cechy reologiczne w niskich temperaturach, są następujące:

$$E = \min(E_i) \tag{2.7}$$

$$\eta = \min(\eta_i) \tag{2.8}$$

Interpretacja przedstawionego kryterium jest następująca: porównując mieszanki mineralno-asfaltowe, za najlepszą pod względem odporności na spękania niskotemperaturowe należy uznać tę, która w niskich temperaturach charakteryzuje się niższymi wartościami modułu sprężystości, niższymi wartościami współczynnika lepkości. Przy niższych modułach sprężystości E i niższych współczynnikach lepkości η w warstwach asfaltowych, w okresie oziębienia powstają mniejsze naprężenia termiczne. W okresie oddziaływania niskich temperatur niższe wartości współczynników lepkości η w warstwach asfaltowych skutkują szybszą relaksacją naprężeń. Relaksacja naprężeń jest proporcjonalna do czasu relaksacji równego:

$$\lambda = \frac{\eta}{E} \tag{2.9}$$

Gdzie:

 λ - czas relaksacji,

 η - współczynnik lepkości,

E - moduł sztywności.

Gdy maleje wartość współczynnika lepkości η w danej temperaturze – skróceniu ulega czas relaksacji.

2.2.3. Wyniki badań

Badania zginania przy stałym obciążeniu dla mieszanek o wysokim module sztywności były wykonywane na Politechnice Gdańskiej w latach 2009-2012. Część badań będzie kontynuowana także w roku 2013. Ze względu na dostępność sprzętu laboratoryjnego, badania były przy użyciu różnych urządzeń. Metodyka badań jednak w każdym z przypadków była identyczna i została przedstawiona w punkcie 2.2.2. Samo opracowanie wyników zostało przeprowadzone przy pomocy metodyki przedstawionej w punkcie 2.2.3.1.

2.2.3.1. Obliczanie wyników

Wykresy pełzania otrzymane z badań laboratoryjnych zostały opisane funkcją modelu Burgers'a. Dopasowanie krzywej teoretycznej do krzywej rzeczywistej z

badań oparto o metodę najmniejszych kwadratów, gdzie za parametry dopasowania służyły 4 parametry modelu Burgers'a: E_1 , E_2 , η_1 i η_2 . Dopasowanie dokonywano w oparciu o dane z obciążania próbki (pierwsze 3600 sekund). Porównanie krzywej teoretycznej oraz krzywej pełzania przedstawiono na rysunku 2.5

Rysunek 2.5 Dopasowanie krzywej teoretycznej do wyników badań w oparciu o parametry modelu Burgers'a.

Przyjęcie takich parametrów dopasowania może powodować niedoszacowanie lub przeszacowanie parametrów E_1 i E_2 . Ze względu na to parametry E_1 i E_2 zostaną skorygowane w oparciu o dane odczytane z krzywych pełzania [2.3], w sposób przedstawiony na rysunku 2.6.

2.2.3.2. Wyniki badań pełzania

2.2.3.3. Badania wykonane w roku 2009

Badania wykonywane były w ramach pracy magisterskiej Jaczewskiego [2.2]. Wykonano badanie zginania ze stałym obciążeniem w temperaturach: 0°C, -5°C, -10°C oraz -15°C dla 4 mieszanek betonu asfaltowego o wysokim module sztywności oraz dla 1 mieszanki betonu asfaltowego do warstwy wiążącej. Recepty mieszanek zaprojektowano w oparciu o przepisy francuskie [2.1, 2.4, 2.5] oraz obowiązujące w roku 2009 polskie wytyczne techniczne [2.6]. Wyniki dla poszczególnych mieszanek przedstawiono w następujących tablicach:

- Beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 20/30 (zawartość asfaltu 5,2%) – tablica 2.12
- Beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 20/30 (zawartość asfaltu 6,2%) – tablica 2.13
- Beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem modyfikowanym 10/40-65 (zawartość asfaltu 5,2%) – tablica 2.14
- Beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem modyfikowanym 10/40-65 (zawartość asfaltu 6,2%) – tablica 2.15
- Beton asfaltowy do warstwy wiążącej AC 16W z asfaltem zwykłym 35/50 tablica 2.16

W tabelach przedstawiono wyniki dla następujących parametrów modelu reologicznego Burgers'a:

- E1 moduł sprężystości natychmiastowej,
- E2 moduł sztywności opóźnionej,
- η₁ lepkość płynięcia ustalonego,
- η₂ lepkość opóźnienia sprężystego.

Tablica 2.12 Parametry modelu Burgers'a dla betonu asfaltowego o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 20/30 (zawartość asfaltu 5,2%)

Temperatura	Nr próbki	E1	E ₂	η1	η2
0°C	A1	7 196	3 135	16 485 078	558 702
- 5°C	A2	7 333	5 228	23 857 172	846 186
- 10°C	A3	12 303	4 925	97 460 441	852 970
1500	A4	13 675	3 808	192 425 583	609 905
- 15°C	A5	12 251	4 414	108 586 539	663 890
śrec	Inia	12 963	4 111	150 506 061	636 898

Tablica 2.13 Parametry modelu Burgers'a dla betonu asfaltowego o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 20/30 (zawartość asfaltu 6,2%)

Temperatura	Nr próbki	E ₁	E ₂	η1	η2
0°C	B1	7 009	2 558	9 474 692	414 341
- 5°C	B2	8 430	5 201	17 536 194	806 473
- 10°C	B3	10 523	3 079	43 416 794	429 210
1500	B4	14 495	2 279	92 705 008	333 928
- 15°C	B5	14 223	2 134	123 924 708	286 450
śrec	Inia	14 359	2 207	108 314 858	310 189

Temperatura	Nr próbki	E ₁	E ₂	η1	η2
0°C	C1	5 791	1 483	7 279 929	288 645
- 5°C	C2	7 490	2 447	20 513 215	397 822
- 10°C	C3	10 177	2 431	43 654 841	356 801
1500	C4	14 108	3 980	172 282 989	753 430
- 15°C	C5	16 214	3 604	7 279 929 20 513 215 43 654 841 172 282 989 125 480 888 148 881 939	549 549
śrec	Inia	15 161	3 792	148 881 939	651 490

Tablica 2.14 Parametry modelu Burgers'a dla betonu asfaltowego o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 10/40-65 (zawartość asfaltu 5,2%)

Tablica 2.15 Parametry modelu Burgers'a dla betonu asfaltowego o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 10/40-65 (zawartość asfaltu 6,2%)

Temperatura	Nr próbki	E ₁	E ₂	η1	η ₂
0°C	D1	5 620	2 377	5 276 408	423 261
- 5°C	D2	6 460	3 503	10 696 322	643 332
- 10°C	D3	9 777	3 843	31 294 034	672 985
1500	D4	12 758	3 407	45 688 385	628 071
- 15°C	D5	12 956	2 537	40 794 811	385 165
śrec	Inia	12 857	2 972	43 241 598	506 618

Tablica 2.16 Parametry modelu Burgers'a dla betonu asfaltowego do warstwy wiążącej AC 16W z asfaltem zwykłym 35/50

Temperatura	Nr próbki	E ₁	E ₂	η1	η2
0°C	E1	6 113	2 222	8 269 833	383 449
- 5°C	E2	6 554	2 074	17 122 165	290 776
- 10°C	E3	9 179	2 505	52 772 083	359 417
1500	E4	11 055	2 751	83 381 680	576 559
- 15 C	E5	14 533	3 753	83 917 560	656 745
średnia 12 794		12 794	3 252	83 649 620	616 652

2.2.3.4. Badania wykonane w roku 2012

W roku 2012 badania zginania ze stałym obciążeniem zostały wykonane w temperaturach: 0°C, - 10°C oraz - 20°C dla 3 mieszanek betonu asfaltowego o wysokim module sztywności oraz dla 3 mieszanek porównawczych (beton asfaltowy do warstwy wiążącej oraz warstwy podbudowy). Recepty mieszanek zaprojektowano w oparciu o polskie wytyczne techniczne [2.7]. Wyniki dla poszczególnych mieszanek przedstawiono w następujących tablicach:

- Beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 20/30 – tablica 2.17
- Beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem modyfikowanym 25/55-60 – tablica 2.18

- Beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem wielorodzajowym 20/30 tablica 2.19
- Beton asfaltowy do warstwy wiążącej AC 16W z asfaltem zwykłym 35/50 tablica 2.20
- Beton asfaltowy do warstwy wiążącej AC 16W z asfaltem zwykłym 50/70 tablica 2.21
- Beton asfaltowy do warstwy podbudowy AC 22P z asfaltem zwykłym 35/50 tablica 2.22

Ze względu na trwające jeszcze badania część wyników nie jest kompletnych. Wyniki przedstawione poniżej nie zawierają jeszcze korekty parametrów sztywności E_1 i E_2 wspomnianych w metodyce. Korekta ta zostanie wykonana po zakończeniu badań.

Tablica 2.17 Parametry modelu Burgers'a dla betonu asfaltowego o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 20/30

Temperatura	Nr próbki	E ₁ E ₂		η1	η2	
000	938/1	9 030	7 014	17 150 279	3 551 717	
0.0	938/2	12 872	4 266	17 768 919	1 132 405	
średnia		10 951	5 640	17 459 599	2 342 061	
- 10°C	938/3	19 192	6 406	96 883 737	2 337 521	
	938/4	31 030	3 061	95 820 883	771 485	
średnia		25 111	4 734	96 352 310	1 554 503	
2000	938/5	hodonio w trokojo reglizacij				
- 20°C	938/6	dadania w trakcie realizacji				
śrec	nia - I - I		-			

Tablica 2.18 Parametry modelu Burgers'a dla betonu asfaltowego o wysokim module sztywności AC WMS 16W z asfaltem modyfikowanym 25/55-60

Temperatura	Nr próbki	E ₁	E ₂	η1	η2		
000	944/1	6 567	2 686	5 529 485	1 092 159		
0.0	944/2	5 828	2 284	4 306 242	788 083		
średnia		6 198	2 485	4 917 863	940 121		
4.000	944/3	16 954	4 979	32 549 796	989 826		
- 10°C	944/4	badania w trakcie realizacji					
średnia		-	-	-	-		
- 20°C	944/5	61 642	4 026	95 342 542 632 448	2 427 235		
	944/6	35 419	3 391	95 342 701 039 432	1 419 783		
średnia		48 531	3 709	95 342 621 835 940	1 923 509		

Tablica 2.19 Parametry modelu Burgers'a dla betonu asfaltowego o wysokim module sztywności AC WMS 16W z asfaltem wielorodzajowym 20/30

Temperatura	Nr próbki	E1	E ₂	η1	η2
0°C	955/1	6 179	5 714	4 523 806	1 600 264
	955/2	3 623	1 228	3 060 221	241 434
średnia		4 901	3 471	3 792 014	920 849

- 10°C	955/3	9 903	3 017	40 364 617	838 796
	955/4	7 665	1 594	23 862 075	319 115
średnia		8 784	2 305	32 113 346	578 955
- 20°C	955/7	9 000	2 043	49 586 227 485	796 088
	955/5	6 795	1 959	49 569 910 580	469 568
średnia		7 898	2 001	49 578 069 032	632 828

Tablica 2.20 Parametry modelu Burgers'a dla betonu asfaltowego do warstwy wiążącej AC 16W z asfaltem zwykłym 35/50

Temperatura	Nr próbki	E1	E ₂	η1	η2
000	926/1	6 158	895	4 710 195	193 547
0.0	926/2	12 393	2 677	7 022 707	507 145
śrec	dnia	9 276	1 786	5 866 451	350 346
- 10°C	926/3	10 553	1 184	49 886 805	228 995
	926/4	33 364	4 534	70 935 079	1 328 836
średnia		21 959	2 859	60 410 942	778 915
- 20°C	926/5	16 434	5 931	49 043 392 481	2 049 348
	926/6	20 256	2 257	170 008 553	467 231
średnia		18 345	4 094	24 606 700 517	1 258 289

Tablica 2.21 Parametry modelu Burgers'a dla betonu asfaltowego do warstwy wiążącej AC 16W z asfaltem zwykłym 50/70

Temperatura	Nr próbki	E1	E ₂	η1	η ₂
000	935/1	5 792	2 183	3 581 572	767 519
0.0	935/2	6 420	2 390	3 391 922	759 700
śrec	Inia	6 106	2 287	3 486 747	763 609
- 10°C	935/3	11 321	1 233	38 191 006	219 319
	935/4	28 461	6 799	54 410 507	2 175 686
średnia		19 891	4 016	46 300 756	1 197 502
- 20°C	935/5	34 544	4 045	412 642 279	983 346
	935/6	34 071	3 845	348 809 741	931 349
średnia		34 308	3 945	380 726 010	957 348

Tablica 2.22 Parametry modelu Burgers'a dla betonu asfaltowego do warstwy podbudowy AC 22P z asfaltem zwykłym 35/50

Temperatura	Nr próbki	E ₁	E ₂	η1	η ₂
000	975/1	7 390	1 956	5 031 698	549 996
0.0	975/2	6 143	1 598	7 099 544	348 739
śrec	Inia	6 766	1 777	6 065 621	449 367
1000	975/3	15 757	4 326	130 993 270	939 297
- 10°C	975/4	16 006	3 868	107 027 527	914 102
śrec	Inia	15 882	4 097	119 010 399	926 700
- 20°C	975/5	19 763	2 690	95 342 709 216 885	717 636

	975/6	badania w trakcie realizacji			
średnia		-	-	-	-

2.3. Literatura

- [2.1] Corté J.-F., *Development and Uses of Hard-Grade Asphalt and of High-Modulus Asphalt Mixes in France*, Transportation Research Circular, Number 503, December 2001,
- [2.2] Jaczewski M., Właściwości niskotemperaturowe mieszanek mineralnoasfaltowych o wysokim module sztywności (AC-WMS), praca magisterska, 2009,
- [2.3] Judycki J., *Modele reologiczne betonu asfaltowego*, Zeszyty naukowe Politechniki Gdańskiej, nr 368, 1984,
- [2.4] NF EN 13108-1 fevrier 2007 Melanges bitumineux. Specifications des materiaux. Partie 1 Enrobes bitumineux,
- [2.5] NF P 98-140 novembre 1999 Enrobes hydrocarbones. Couches d'assises enrobes a module eleve (EME). Definition – Classification – Caracteristiques – Fabrication – Mise en oeuvre,
- [2.6] Sybilski D. i in., *Nawierzchnie asfaltowe na drogach publicznych, WT-2 Nawierzchnie asfaltowe*, IBDIM, Warszawa 2008,
- [2.7] Sybilski D. i in., Nawierzchnie asfaltowe na drogach krajowych, WT-2 2010 Mieszanki mineralno-asfaltowe, IBDIM, Warszawa 2010, opublikowany na stronie <u>http://gddkia.gov.pl/userfiles/articles/d/Dokumenty_techniczne/WT2.pdf</u>
- [2.8] Pszczoła M., *Spękania niskotemperaturowe warstw asfaltowych nawierzchni*, praca doktorska, Politechnika Gdańska, Gdańsk, 2006

3. Badania cech reologicznych betonów asfaltowych o wysokim module sztywności w wysokich temperaturach

Do wyznaczenia parametrów reologicznych betonów asfaltowych o wysokim module sztywności AC-WMS zastosowano dwa badania pełzania wykonywane na wysokich próbkach walcowych. Wyznaczenie parametrów reologicznych z badania pełzania statycznego wykonano w oparciu o metodykę własną opracowaną przez Judyckiego, Jaczewskiego i Stachowicza [3.8]. W przypadku badań dynamicznych wykorzystano badanie modułu dynamicznego opracowanego w ramach NCHRP [3.5, 3.6] wykonywanych na zlecenie AASHTO i FHA. Parametry reologiczne z badań dynamicznych wyznaczono w oparciu o podprogram DEBUROAD oprogramowania VEROAD.

Badania wykonano dla następujących materiałów:

Badania pełzania statycznego:

- Mieszanka A beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 20/30
- Mieszanka B beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem modyfikowanym 25/55-60
- 3. Mieszanka C beton asfaltowy o wysokim module sztywności AC WMS 16 W z asfaltem wielorodzajowym 20/30
- Mieszanka D beton asfaltowy do warstwy wiążącej AC 16W z asfaltem zwykłym 35/50
- 5. Mieszanka E beton asfaltowy do warstwy podbudowy AC 22P z asfaltem zwykłym 35/50

Badania pełzania dynamicznego:

- Mieszanka A beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem zwykłym 20/30
- Mieszanka B beton asfaltowy o wysokim module sztywności AC WMS 16W z asfaltem modyfikowanym 25/55-60
- 3. Mieszanka C beton asfaltowy o wysokim module sztywności AC WMS 16 W z asfaltem wielorodzajowym 20/30
- Mieszanka D beton asfaltowy do warstwy wiążącej AC 16W z asfaltem zwykłym 35/50
- Mieszanka E beton asfaltowy do warstwy podbudowy AC 22P z asfaltem zwykłym 35/50
- Mieszanka F beton asfaltowy do warstwy wiążącej AC 16W z asfaltem zwykłym 50/70
- Mieszanka G beton asfaltowy o wysokim module sztywności AC WMS 16P z asfaltem zwykłym 20/30 (Autostrada A1)
- Mieszanka H beton asfaltowy o wysokim module sztywności AC WMS 16 z asfaltem zwykłym 20/30 (Autostrada A4)
- Mieszanka I beton asfaltowy o wysokim module sztywności AC WMS 16 z asfaltem zwykłym 20/30 (Autostrada A4)
- 10. Mieszanka J beton asfaltowy o wysokim module sztywności AC WMS 16 z asfaltem zwykłym 20/30 (dr. eksp. S7, wykonawca A)
- 11. Mieszanka K beton asfaltowy o wysokim module sztywności AC WMS 16 z asfaltem zwykłym 20/30 (dr. eksp. S7, wykonawca B)

3.1. Badanie pełzania statycznego

3.1.1. Metodyka badania

Badania pełzania statycznego wykonano przy pomocy urządzenia NAT. Polegało ono na obciążaniu poprzez dwie stalowe płyty walcowej próbki mieszanki mineralnoasfaltowej stałym obciążeniem przy zachowaniu stałej temperatury. Rejestrowane były odkształcenia pionowe podczas okresu obciążenia oraz okresu odciążenia. Schemat badania przedstawiono na rysunkach 3.1 i 3.2.

Rysunek 3.1 Schemat badania pełzania statycznego

Rysunek 3.2 Badanie pełzania statycznego w urządzeniu NAT

Przyjęte parametry badania:

- obciążenie
- czas obciążenia
- czas odciążenia
- temperatury badania

100 kPa 3600 sekund 3600 sekund +25°C; +40°C, +50°C • średnica próbki

wysokość próbek

100 mm

3 do 5

60mm, 80 mm, 100 mm, 120 mm

- ilość próbek w jednej serii
- badanie pełzania bez skrępowania bocznego próbek
- próbki zagęszczane w żyratorze

Badanie polega na obciążaniu walcowej próbki wzdłuż jej osi. Próbka jest obciążana przez okres 3600 sekund obciążeniem stałym 100 kPa, a następnie odciążana przez okres 3600 sekund. Ze względu na ograniczenia urządzenia NAT, obciążenie podczas odciążania wynosiło pomiędzy 0 a 3 kPa.

Podczas badania rejestrowane są przemieszczenia pionowe przy pomocy dwóch czujników umiejscowionych na górnej stalowej płycie. Przemieszczenia są automatycznie przeliczane przez program urządzenia NAT na odkształcenia pionowe próbki. Rejestracja danych następuje w pliku tekstowym w następujący sposób:

- przez pierwsze 10 sekund obciążania rejestracja danych następuje co 2 sekundy,
- przez następne 90 sekund obciążania rejestracja danych następuje co 10 sekund,
- przez resztę czasu obciążania rejestracja danych następuje co 100 sekund,
- podczas odciążania rejestracja danych następuje co 30 sekund, przy czym pierwszy odczyt następuje w 3630 sekundzie badania.

Sposób rejestracji danych oraz samego badania wpływa znacząco na dalszą analizę wyników, a przez to na wyznaczone z badań parametry reologiczne. Szczególnie dotyczy to parametru E₁. Typowy wynik badania przedstawiono na rysunku 3.3.

Rysunek 3.3 Typowy wynik badania pełzania statycznego

3.1.2. Przyjęcie rozmiarów próbki

Przyjęcie rozmiarów próbki walcowej h=100 mm oraz ϕ =100 mm wynikało z ograniczeń sprzętów dostępnych w czasie badania w laboratorium. Pierwotne wymiary próbki były następujące: h=150 mm, ϕ =100 mm oraz czujniki o bazie pomiarowej wynoszącej 100 mm zamocowane na pobocznicy próbki. Założenia

wynikały z jak największego zmniejszenia wpływów urządzenia na wyniki badania. Dotyczyło to szczególnie zmniejszenia wpływu tarcia pomiędzy płytami stalowymi a powierzchniami podstaw próbki. Rozważano wykonywanie próbek poprzez wycinanie wiertnicą rdzeni walcowych a następnie przycinanie podstaw próbki walcowej przy pomocy piły tarczowej, tak by miała ona zadaną wysokość lub przygotowanie próbki poprzez zagęszczanie w żyratorze próbek o wysokości 170 mm a następnie przycinanie ich do wysokości 150 mm. Próby te zakończyły się niepowodzeniem z następujących przyczyn:

- w przypadku próbek wycinanych z nawierzchni:
 - o brak odpowiedniej równości powierzchni bocznej próbek
 - o nierównoległość podstaw próbek
 - problemy z uzyskaniem jednakowego zagęszczenia na całej wysokości próbki
- w przypadku próbek żyratorowych:
 - problemy z uzyskaniem zagęszczenia w środku próbki przy zastosowaniu wysokości 170 mm.

Dodatkowym problemem było równe zamontowanie czujników przemieszczenia na pobocznicy próbek. Przykłady problemów przedstawiono na rysunkach 3.4, 3.5, 3.6.

Rysunek 3.4 Niedogęszczenie próbki wyciętej przy pomocy wiertnicy

Rysunek 3.5 Deformacje płaszczyzn pobocznicy oraz nierównoległość podstaw próbki walcowej. Dodatkowo niedogęszczenie próbki przy podstawie.

Rysunek 3.6 Problemy przy poprawnym zamocowaniu czujników na pobocznicy próbki.

Ze względu na występowanie problemów zdecydowano się zastosować próbki o wymiarach h=100 mm oraz ϕ =100 mm, dodatkowo sprawdzając wpływ wysokości na wyniki badań.

3.1.3. Parametry reologiczne wyznaczone na podstawie badań

3.1.3.1. Wyznaczenie parametrów reologicznych z badania pełzania statycznego

Podstawowa metodyka wyznaczania parametrów reologicznych jest identyczna jak w przypadku badań zginania belek przy stałym obciążeniu wykonywanym w niskich temperaturach. Badania te wykonywane we wcześniejszych pracach Politechniki Gdańskiej [3.1, 3.2, 3.3, 3.7]. Podstawowym modelem wykorzystywanym do opisu zachowania się materiału przy obciążeniu statycznym jest model Burgers'a, którego podstawowe założenia i wzory zostały przedstawione w punkcie 2.2.3.1.

Badanie próbek pełzania w wysokich temperaturach różnią się od typowych wyników badania pełzania. Dotyczy to szczególnie części wykresu tuż po obciążeniu oraz tuż po odciążeniu. Element odkształcenia sprężystego z części wykresu opisującej obciążenie nie jest równy odkształceniu sprężystemu z części wykresu opisującej odciążenie. Sytuację tą przedstawia rysunek 3.7.

Rysunek 3.7 Zachowanie się modelu Burgers'a w wysokich temperaturach.

Dodatkowo na uwagę zasługuje fakt widoczny na rysunku 3.3. Pierwsza część wykresu nie zawsze jest identyczna dla tego samego materiału i często różnica jest kilkukrotna. Wyznaczenie parametru E_1 z części wykresu przedstawiającej odciążenie uniemożliwia fakt pierwszego odczytu po odciążeniu dokonywanego w 3630 sekundzie. Z tego względu zdecydowano się na teoretyczne wyznaczenie parametru E1 z części wykresu opisującej obciążenie. Z wykresu pełzania odrzucono pierwsze: 20, 40, 60, 80, 100 i 200 sekund. Pozostałą pierwszą część wykresu opisano przy pomocy zależności typu log(ϵ) = log(t). Z zależności tej wyznaczono odkształcenie ϵ w czasie równym t=0s. Sposób opisania krzywej pełzania funkcją log(ϵ) = log(t) przedstawiono na rysunku 3.8.

Rysunek 3.8 Opisanie krzywej pełzania funkcją $log(\varepsilon) = log(t)$ przy zadanych odrzuconych pierwszych sekundach badania

Pozostałe parametry reologiczne mieszanek mineralno-asfaltowych otrzymano poprzez zastosowanie metody najmniejszych kwadratów

3.1.3.2. Wyniki badań pełzania w wysokich temperaturach

Wyniki badań pełzania poszczególnych mieszanek mineralno-asfaltowych przedstawiono na poniższych rysunkach:

- rysunki 3.9, 3.10, 3.11 Mieszanka A (AC WMS 16W 20/30)
- rysunki 3.12, 3.13, 3.14 Mieszanka B (AC WMS 16W 25/55-60
- rysunki 3.15, 3.16, 3.17 Mieszanka C (AC WMS 16W 20/30 wielorodzajowy)
- rysunki 3.18, 3.19, 3.20 Mieszanka D (AC 16W 35/50)
- rysunki 3.21, 3.22, 3.23 Mieszanka E (AC 22P 35/50)

Rysunek 3.9 Badanie pełzania statycznego – Mieszanka A Temperatura 25°C

Rysunek 3.10 Badanie pełzania statycznego – Mieszanka A Temperatura 40°C

Rysunek 3.11 Badanie pełzania statycznego – Mieszanka A temperatura 50°C

Rysunek 3.12 Badanie pełzania statycznego – Mieszanka B temperatura 25°C

Rysunek 3.13 Badanie pełzania statycznego – Mieszanka B temperatura 40°C

Rysunek 3.14 Badanie pełzania statycznego – Mieszanka B temperatura 50°C

Rysunek 3.15 Badanie pełzania statycznego – Mieszanka C temperatura 25°C

Rysunek 3.18 Badanie pełzania statycznego – Mieszanka D temperatura 25°C

Rysunek 3.19 Badanie pełzania statycznego – Mieszanka D temperatura 40°C

Rysunek 3.20 Badanie pełzania statycznego – Mieszanka D temperatura 50°C

Rysunek 3.21 Badanie pełzania statycznego – Mieszanka E temperatura 25°C

Rysunek 3.22 Badanie pełzania statycznego – Mieszanka E temperatura 40°C

3.1.3.3. Parametry reologiczne dla poszczególnych mieszanek

Wyniki obliczeń parametrów Burgers'a według metodyki podanej w punkcie 3.1.3.1 przedstawiono w tablicach poniżej. W przypadku dużych rozbieżności pomiędzy wynikami, podano także wartości skorygowane po odrzuceniu wyników z rozbieżnych próbek. Tablice przedstawiają następujące wyniki:

- Tablica 3.1 Parametry Modelu Burgers'a dla mieszanki A (AC WMS 16W 20/30)
- Tablica 3.2 Parametry Modelu Burgers'a dla mieszanki B (AC WMS 16W 25/55-60)
- Tablica 3.3 Parametry Modelu Burgers'a dla mieszanki C (AC WMS 16W 20/30 wielorodzajowy)
- Tablica 3.4 Parametry Modelu Burgers'a dla mieszanki D (AC 16W 35/50)

• Tablica 3.5 – Parametry Modelu Burgers'a dla mieszanki E (AC 22P 35/50)

W tabelach przedstawiono wyniki dla następujących parametrów modelu reologicznego Burgers'a:

E1 - moduł sprężystości natychmiastowej,

- E2 moduł sztywności opóźnionej,
- η₁ lepkość płynięcia ustalonego,
- η₂ lepkość opóźnienia sprężystego.

Tablica 3.1 Parametry modelu Burgers'a dla mieszanki A (AC WMS 16W 20/30)

Temperatura	Nr próbki	E1	E ₂	η_1	η_2
	A36	2288,796	71,032	480939,813	20800
	A37	5027,041	80,830	457668,984	33577
25°C	A38	105,673	35,475	406486,650	3227
	A39	6442,318	75,478	530892,615	23412
	A40	831,396	54,502	399710,797	13697
śrec	Inia	2939	63	455139	18942
	A7	1017,121	48,715	653949,9055	11612
40°C	A8	377,772	49,985	866749,9426	6457
	A9	460,312	42,148	699095,8018	6608
śrec	Inia	618	47	739931	8226
	A10	231,654	49,646	1039887,855	4313
50°C	A11	155,670	42,294	998348,321	3329
	A12	250,149	48,517	863598,071	4892
śrec	Inia	212	47	967278	4178

Tablica 3.2 Parametry modelu Burgers'a dla mieszanki B (AC WMS 16W 25/55-60)

Temperatura	Nr próbki	E1	E ₂	η1	η_2
	B13	405,253	80,737	1248004,111	8768
	B14	815,053	105,236	1364534,804	16673
25°C	B15	361,507	87,034	1065861,349	15855
	B19	97,442	51,921	967372,517	3037
śrec	Inia	420	81	1161443	11083
	B16	127,702	39,234	506150,096	5555
	B17	322,266	33,754	510465,800	5566
40°C	B18	756,611	53,258	656092,007	9814
	B30	594,065	35,187	413655,498	6064
	B31	277,281	27,279	417855,969	4359
śrec	Inia	415	38	500843	6271
50°C	B27	303,855	31,140	380349,008	3788
	B28	158,198	25,076	449372,366	2808
	B29	140,335	26,582	502398,089	2650
śrec	Inia	201	28	444039	3082

Temperatura	Nr próbki	E1	E ₂	η1	η ₂
	C20	150,862	31,572	463134,810	4513
	C21	87,783	28,030	499300,612	2691
25°C	C22	288,713	41,254	558665,338	5102
	C26	419,040	75,782	838436,562	14357
śrec	Inia	237	44	589884	6666
	C30	446,611	34,607	397126,285	5012
40°C	C31	53,774	26,122	556413,967	2028
	C32	178,155	42,471	831407,647	4230
śrec	Inia	226	34	594982	3756
	C45	96,163	41,871	626290,381	2608
F0°C	C46	92,913	42,033	864291,419	2711
50 C	C47	104,717	41,068	756957,328	2841
	C48	103,315	40,810	832454,292	2778
śrec	Inia	99	41	769998	2734

Tablica 3.3 Parametry modelu Burgers'a dla mieszanki C (AC WMS 16W 20/30 wielorodzajowy)

Tablica 3.4 Parametry modelu Burgers'a dla mieszanki D (AC 16W 35/50)

Temperatura	Nr próbki	E1	E ₂	η1	η2
	D53	159,480	47,960	1387165,321	3963
25°C	D54	249,297	43,834	904788,727	4538
	D55	183,468	54,469	1232472,013	4705
śrec	Inia	197	48	1174808	4402
	D61	64,270	52,511	2060928,731	2657
40°C	D62	93,529	50,222	1799878,244	3334
	D63	58,579	51,135	1763035,879	3004
śrec	Inia	72	51	1874614	2998
	D59	68,902	73,881	2153091,111	3284
50°C	D64	83,271	68,127	1708242,269	3117
	D65	67,802	52,043	1185209,285	3484
śrec	Inia	73	65	1682180	3295

Tablica 3.5 Parametry modelu Burgers'a dla mieszanki E (AC 22P 35/50)

Temperatura	Nr próbki	E1	E ₂	η1	η_2
	E70	974,841	63,351	671030,558	12510
25°C	E71	564,885	78,336	707959,688	19349
	E72	1975,982	92,663	1037832,558	22155
średnia		1172	78	805607	18005
	E73	367,012	49,666	637855,804	5644
40°C	E74	101,222	25,601	563584,174	2273
	E75	146,062	28,884	637120,714	2973
średnia		205	35	612853	3630

50°C	E66	60,340	47,786	1318285,066	2382
	E67	72,383	51,660	1432574,209	2714
	E68	88,455	59,084	1714638,728	3092
średnia		74	53	1488499	2729

3.1.4. Wpływ wysokości próbki na wyniki badań

By sprawdzić wpływ smukłości próbki na wyniki badania pełzania statycznego wykonano dodatkowe serie próbek walcowych o smukłości 0,6, 0,8 oraz 1,2 dla mieszanki betonu asfaltowego o wysokim module sztywności z zastosowaniem asfaltu zwykłego 20/30. Zależności przedstawiono za Stachowiczem [3.8] na rysunkach:

- Rysunek 3.24 Wpływ smukłości na moduł plastyczności (E_{pl})
- Rysunek 3.25 Wpływ smukłości na parametr E1
- Rysunek 3.26 Wpływ smukłości na parametr E₂
- Rysunek 3.27 Wpływ smukłości na parametr η1
- Rysunek 3.28 Wpływ smukłości na parametr η₂

Zależność modułu plastyczności *E_{pl}* od smukłości *h/d* w wysokich temperaturach

Rysunek 3.24 – Wpływ smukłości na moduł plastyczności (Epl)

Zależność modułu sprężystości natychmiastowej E₁ od smukłości h/d w wysokich temperaturach

Rysunek 3.25 – Wpływ smukłości na parametr E1

Zależność modułu sztywności opóźnionej E₂ od smukłości h/d w wysokich temperaturach

Rysunek 3.26 – Wpływ smukłości na parametr E2

Zależność lepkości płynięcia ustalonego η_1 od smukłości h/d w

Rysunek 3.27 – Wpływ smukłości na parametr η_1

Zależność lepkości opóźnienia sprężystego η_2 od smukłości h/d w wysokich temperaturach

Rysunek 3.28 – Wpływ smukłości na parametr η_2

Jak można zauważyć na powyższych rysunkach wpływ smukłości na wyniki badań pełzania nie jest znaczący. Większość wyników mieści się w odchylenie ±20% od wyników dla smukłości 1,0. Przy przybliżeniu metody obliczeniowej wykorzystanej do wyznaczenia parametrów Burgers'a uznano, że wpływ jest pomijalny. Różnice przy wyznaczeniu parametrów E1 i E2 przedstawionych na wykresach Stachowicza oraz obliczeniach podanych w punkcie 3.1.3.3 wynikają z przyjęcia innej metodyki obliczeń. Nie wpływają one na zmianę zależności.

3.2. Badanie dynamicznego modułu zespolonego

3.2.1. Metodyka badania

Badanie dynamicznego modułu zespolonego wykonano w oparciu o proponowany wytyczne amerykańskie NCHRP 9-29: PP 02 Developing Dynamic Modulus Master Curves for Hot-Mix Asphalt Concrete Using the Simple Performance Test System [3.6].

Badanie polega na przekazaniu osiowych obciążeń impulsowych na próbkę walcową przy pomocy dwóch stalowych płytek w określonym zakresie temperatur oraz częstotliwości obciążenia. Schemat badania oraz urządzenia pokazane zostały na rysunkach 3.29 i 3.30.

Rysunek 3.29 Schemat badania dynamicznego modułu zespolonego.

Rysunek 3.30 Urządzenie do badania dynamicznego modułu zespolonego.

Badanie przeprowadzono dla następujących parametrów:

- obciążenie zmienne; dobierane w zależności od temperatury
- temperatury badania
- częstotliwości obciążenia

zmienne; dobierane w zależności od temperatury +4°C; +20°C, +45°C (jak dla PG 76-XX i sztywniejszych) 25 Hz, 20 Hz, 10 Hz, 5 Hz, 2 Hz, 1 Hz, 0,5 Hz, 0,2 Hz, 0,1 Hz, 0,01 Hz

- średnica próbki 100 mm •
- wysokość próbek 150 mm
- ilość próbek w jednej serii •

2 próbki na dana temperature

ilość czujników na próbkę

3 czujniki zamocowane na pobocznicy próbki

- próbki zagęszczane w żyratorze

3.2.1.1. Wyznaczanie krzywej wiodącej (Master Curve)

Do wyznaczenia krzywej wiodącej (Master Curve) wykorzystano metodykę podaną w standardzie NCHRP 9-29: PP 02. Dla poszczególnych temperatur wykorzystano częstotliwości obciążenia podane w tablicy 3.6

Tablica 3.6 Temperatury badania oraz częstotliwości obciążenia [3.6]

Temperatura [°C]	Częstotliwości obciążenia [Hz]
4	10; 1; 0,1
20	10; 1; 0,1
45	10; 1; 0,1; 0,01

W tablicy 3.6 przedstawiono przykładowe wyniki pomiarów dla danej mieszanki mineralno-asfaltowej w 3 temperaturach

Temperatura	Częstotliwość	Moduł zespolony	Kąt przesunięcia fazowego
[°C]	Hz	MPa	deg
4	25	19775	5,2
4	10	18989	5,5
4	1	16491	6,9
4	0,1	13759	8,7
20	25	13693	8,6
20	10	12580	9,5
20	1	9784	12,4
20	0,1	6844	16,6
45	25	4283	25,6
45	10	3373	26,7
45	1	1646	29,8
45	0,1	742	29,4
45	0,01	341	28,3

Tablica 3.7 Przykładowe wyniki badania dynamicznego modułu zespolonego

Do wyznaczenia równania krzywej wiodącej (Master Curve) dla dynamicznego modułu zespolonego skorzystano z finalnej wersji wzoru podanej w punkcie 10.1.3 wytycznych NCHRP 9-29: PP 02. Wzór ten ma następującą postać:

$$\log \left| E^* \right| = \delta + \frac{\left(Max - \delta \right)}{1 + e^{\beta + \gamma \left\{ \log \omega + \frac{\Delta E_a}{19.14714} \left[\left(\frac{1}{T} \right) - \left(\frac{1}{T_r} \right) \right] \right\}}}$$
(3.3)

gdzie:

|E*| - moduł dynamiczny, psi

Max - maksymalny moduł ograniczający krzywą wiodąca, psi

f_r - częstotliwość zredukowana w temperaturze referencyjnej, Hz f - częstotliwość obciążenia w temperaturze badania, Hz

T_r - temperatura referencyjna, °K

T - temperatura badania, °K

 ΔE_a - energia aktywacji (traktowana jako parametr dopasowania krzywej),

 δ,β,γ - parametry dopasowania krzywej.

Do wyznaczenia częstotliwości zredukowanej przy wyznaczaniu krzywej wiodącej (Master Curve) wykorzystano wzór podany w punkcie 10.1.2 wytycznych NCHRP 9-29: PP 02. Wzór ma następującą postać:

$$\log f_r = \log f + \frac{\Delta E_a}{19.14714} \left(\frac{1}{T} - \frac{1}{T_r} \right)$$
(3.4)

gdzie oznaczenia jak poprzednio.

Do wyznaczenia maksymalnego modułu ograniczającego krzywą wiodącą wybrano wzór wykorzystujący model Hirsch'a (Christensen i wsp. 2003 podany za NCHRP 9-29: PP 02). Wzór ma postać następującą:

$$|E^*|_{\max} = P_c \left[4,200,000 \left(1 - \frac{VMA}{100} \right) + 435,000 \left(\frac{VFA \times VMA}{10,000} \right) \right] + \frac{1 - P_c}{\left[\left(\frac{1 - \frac{VMA}{100}}{4,200,000} + \frac{VMA}{435,000(VFA)} \right]}$$
(3.5)

gdzie:

$$P_{c} = \frac{\left(20 + \frac{435,000(VFA)}{VMA}\right)^{0.58}}{650 + \left(\frac{435,000(VFA)}{VMA}\right)^{0.58}}$$
(3.6)

|E*|max- maksymalny moduł ograniczający krzywą wiodącą, psi

VMA - wolna przestrzeń w mieszance mineralnej, %

VFA - wolna przestrzeń wypełniona asfaltem, %

Ze względu na to, że model Hirsch'a jako maksymalną wartość modułu asfaltu uznaje 1 GPa, co nie zawsze jest prawdziwe dla asfaltów twardych (mało powszechnie używanych w Stanach Zjednoczonych do mieszanek mineralno-asfaltowych), w przypadku gdy |E*|_{max} przyjmowało wartość mniejszą niż uzyskano z badania modułu dynamicznego, jako |E*|_{max} przyjmowano wartość dynamicznego modułu zespolonego w temperaturze 4°C oraz częstotliwości 25 Hz.

Do wyznaczenia krzywej wiodącej (Master Curve) wykorzystano średnie dynamiczne moduły zespolone uzyskane z dwóch badań przy założeniu liniowej w skali logarytmicznej zależności współczynnika przesunięcia α (T). Jako temperaturę referencyjną wyznaczono 20°C

Po wyznaczeniu krzywej wiodącej (Master Curve) obliczono, korzystając z wzorów 3.5 i 3.6 dynamiczne moduły zespolone dla następującego zakresu temperatur: - 10°C, 5°C, 20°C, 30°C, 40°C, 50°C, 60°C i częstotliwości obciążenia: 25 Hz, 10 Hz, 5 Hz, 1 Hz, 0,5Hz i 0,1 Hz. Kąty przesunięcia fazowego dla danej temperatury i częstotliwości wyznaczono na podstawie wykresu zwanego w literaturze "black space" lub "black diagram" czyli zależności modułu oraz kąta przesunięcia fazowego. Na zależność tą nie ma wpływu temperatura. Przykładowy "black diagram" przedstawiono na rysunku 3.31

3.2.2. Wyniki badania dynamicznego modułu zespolonego

Wyniki badania dynamicznego modułu zespolonego w 3 temperaturach (4°C, 20°C i 45°C) przedstawiono jako zależność dynamicznego modułu zespolonego od częstotliwości zredukowanej. Jako referencyjną temperaturę tworzenia krzywych wiodących poszczególnych mieszanek mineralno-asfaltowych wybrano 20°C. Dodatkowo na rysunkach przedstawiono krzywe wiodące utworzone na podstawie wyników badań laboratoryjnych wykorzystywanych do wyznaczenia parametrów reologicznych modelu Burgers'a. Wyniki badań oraz utworzonych krzywych wiodących przedstawiono na następujących rysunkach:

- Rysunek 3.32 AC WMS 16W 20/30
- Rysunek 3.33 AC WMS 16W 25/55-60
- Rysunek 3.34 AC WMS 16 W 20/30 wielorodzajowy
- Rysunki 3.35 i 3.36 AC 16W 35/50
- Rysunek 3.37 AC 22P 35/50
- Rysunek 3.38 AC 16W 50/70
- Rysunek 3.39 AC WMS 16P 20/30 (Autostrada A1)
- Rysunek 3.40 AC WMS 16 20/30 (Autostrada A4)
- Rysunek 3.41 AC WMS 16 20/30 (Autostrada A4)
- Rysunek 3.42 AC WMS 16 20/30 (dr. eksp. S7)
- Rysunek 3.43 AC WMS 16 20/30 (dr. eksp. S7)

Rysunek 3.32 – Badanie modułu dynamicznego – AC WMS 16W 20/30 – wyniki badania oraz krzywa wiodąca (temperatura referencyjna 20°C)

Rysunek 3.33 – Badanie modułu dynamicznego – AC WMS 16W 25/55-60 – wyniki badania oraz krzywa wiodąca (temperatura referencyjna 20°C)

Rysunek 3.34 – Badanie modułu dynamicznego – AC WMS 16 W 20/30 wielorodzajowy – wyniki badania oraz krzywa wiodąca (temperatura referencyjna 20°C)

Rysunek 3.35 – Badanie modułu dynamicznego – AC 16W 35/50 – wyniki badania oraz krzywa wiodąca (temperatura referencyjna 20°C)

Rysunek 3.36 – Badanie modułu dynamicznego – AC 16W 35/50 – wyniki badania oraz krzywa wiodąca (temperatura referencyjna 20°C)

Rysunek 3.37 – Badanie modułu dynamicznego – AC 22P 35/50 – wyniki badania oraz krzywa wiodąca (temperatura referencyjna 20°C)

Rysunek 3.38 – Badanie modułu dynamicznego – AC 16W 50/70 – wyniki badania oraz krzywa wiodąca (temperatura referencyjna 20°C)

Rysunek 3.39 – Badanie modułu dynamicznego – AC WMS 16P 20/30 (Autostrada A1) – wyniki badania oraz krzywa wiodąca (temperatura referencyjna 20°C)

Rysunek 3.40 – Badanie modułu dynamicznego – AC WMS 16 20/30 (Autostrada A4) – wyniki badania oraz krzywa wiodąca (temperatura referencyjna 20°C)

Rysunek 3.41 – Badanie modułu dynamicznego – AC WMS 16 20/30 (Autostrada A4) – wyniki badania oraz krzywa wiodąca (temperatura referencyjna 20°C)

Rysunek 3.42 – Badanie modułu dynamicznego – AC WMS 16 20/30 (dr. eksp. S7) – wyniki badania oraz krzywa wiodąca (temperatura referencyjna 20°C)

Rysunek 3.43 – Badanie modułu dynamicznego – AC WMS 16 20/30 (dr. eksp. S7) – wyniki badania oraz krzywa wiodąca (temperatura referencyjna 20°C)

3.2.3. Parametry reologiczne wyznaczone na podstawie modułów dynamicznych

3.2.3.1. Wyznaczanie parametrów reologicznych modelu Burgers'a z badania modułu dynamicznego w różnych temperaturach

Do wyznaczenia parametrów reologicznych modelu Burgers'a wykorzystano nakładkę Deburoad z pakietu Veroad. Na rysunku 3.44 przedstawiono widok ekranu pokazujący działanie nakładki.

C:\DOCUME~1\XPMUser\Pulpit\Veroad\DEBUROAD.EXE				
Deburoad - Version 2000 PC Calculates the Burgers'parameters from stiffnesses and phase angle:	s			
Gdansk University of Technology				
STATUS Input keyboard Output: test.deb Weight Smix:Phi= 10.0 Number of points: 9 Calculation: 1 Sample:				
$\begin{array}{c} \hline \textbf{COMMUNICATION} & Seed values: E1=22281 MPa N1=7821 MPa \\ \hline \textbf{Are these values correct (y/n)? _ E2=28713 MPa N2=6623 MPa \\ \hline \textbf{Relative goodness of fit (Meas/calc) after 0 iterations.} \\ \hline \textbf{H} \ \textbf{Preg Srel Prel} & \textbf{Hreg Srel Prel} \\ 1 25.00 0.90 2.38 7 0.50 1.38 0.19 \\ 2 20.00 0.89 1.97 8 0.20 1.96 0.15 \\ 3 10.00 0.87 1.04 9 0.10 3.04 0.13 \\ 4 5.00 0.85 0.57 \\ 5 2.00 0.91 0.29 \\ 6 1.00 1.10 0.22 \end{array}$.\$			

Rysunek 3.44 Podprogram DEBUROAD pakietu VEROAD

Do wyznaczenia parametrów reologicznych modelu Burgers'a program wykorzystuje teorię przedstawioną przez Pronk'a. Podstawowe wzory wykorzystane w podprogramie podano za [3.9]:

Moduł sztywności dany jest wzorem:

$$S = \sqrt{\frac{1}{A^2 + B^2}}$$
(3.7)

gdzie:

 $A = \frac{1}{E_1} + \frac{E_2}{E_2^2 + (\eta_2 \cdot \omega)^2}$ (3.8)

$$B = \frac{1}{\eta_1 \cdot \omega} + \frac{\eta_2 \cdot \omega}{E_2^2 + (\eta_2 \cdot \omega)^2}$$
(3.9)

Kąt przesunięcia fazowego dany jest wzorem:

$$\varphi = \arctan\left(\frac{B}{A}\right) \tag{3.10}$$

3.2.3.2. Parametry reologiczne wyznaczone bezpośrednio z badań

W celu skontrolowania i skorygowania parametrów reologicznych wyznaczonych na podstawie krzywych wiodących poszczególnych betonów asfaltowych, wyznaczono parametry reologiczne bezpośrednio z badań według metodyki opisanej w punkcie 3.2.3. Wyniki obliczeń przedstawione są w poniższych tablicach:

W tabelach przedstawiono wyniki dla następujących parametrów modelu reologicznego Burgers'a:

E1 - moduł sprężystości natychmiastowej,

- E₂ moduł sztywności opóźnionej,
- η₁ lepkość płynięcia ustalonego,
- η₂ lepkość opóźnienia sprężystego.

Tablica 3.8 Parametry modelu Burgers'a dla mieszanki A (AC WMS 16W 20/30)

Temperatura	Nr próbki	E1	E ₂	η1	η2
100	834_1	33 645	41 026	13 205	6 222
4'0	834_2	33 223	38 847	10 569	8 887
śrec	Inia	33 434	39 937	11 887	7 555
2000	834_3	18 876	9 389	3 158	2 110
20°C	834_4	21 732	10 832	4 182	2 455
śrec	Inia	20 304	10 111	3 670	2 283
45°C	834_5	6 768	440	421	434
	834_6	6 944	440	443	441
średnia		6 856	440	432	438

Tablica 3.9 Parametry modelu Burgers'a dla mieszanki B (AC WMS 16W 25/55-60)

Temperatura	Nr próbki	E ₁	E ₂	η1	η2
400	854_1	29 108	24 065	10 077	5 642
4°C	854_2	30 645	26 739	9 319	6 145
śrec	Inia	29 877	25 402	9 698	5 894
20°C	854_3	16 638	5 046	2 369	1 147
	854_4	16 390	5 564	2 095	1 269
śrec	Inia	16 514	5 305	2 232	1 208
45°C	854_5	4 549	228	214	216
	854_6	3 875	188	186	179
śrec	Inia	4 212	208	200	198

Tablica 3.10 Parametry modelu Burgers'a dla mieszanki C (AC WMS 16 W 20/30 wielorodzajowy)

Temperatura	Nr próbki	E ₁	E ₂	η1	η2
400	853_1	23 919	21 191	6 620	4 802
4°C	853_2	24 524	21 818	6 464	4 980
śrec	Inia	24 222	21 505	6 542	4 891
0000	853_4	14 729	6 324	2 642	1 381
2010	853_3	13 952	5 736	2 109	1 225
śrec	Inia	14 341	6 030	2 376	1 303
45°C	853_5	4 465	463	250	447
	853_6	4 473	475	262	461
śrec	Inia	4 469	469	256	454

Tablica 3.11 Parametry modelu Burgers'a dla mieszanki D (AC 16W 35/50)

Temperatura	Nr próbki	E1	E ₂	η1	η2
400	516_4	28 287	32 848	11 444	4 182
4°C	516_5	25 225	31 671	10 663	4 628
śrec	Inia	26 756	32 260	11 054	4 405
2000	516_6	14 199	6 663	2 199	1 613
2010	516_7	15 888	6 620	2 415	1 486
śrec	Inia	15 044	6 642	2 307	1 550
	516_8	4 564	186	300	199
45°C	516_11	3 867	168	234	179
śrec	średnia		177	267	189
100	832_1	31 023	29 401	9 795	6 879
40	832_2	31 408	27 246	8 936	6 172
śrec	Inia	31 216	28 324	9 366	6 526
2000	832_3	17 714	5 374	2 592	1 248
2010	832_4	18 939	6 571	2 827	1 533
śrec	Inia	18 327	5 973	2 710	1 391
45°C	832_5	4 490	192	221	182
	832_6	4 406	212	208	196
śrec	Inia	4 448	202	215	189

Tablica 3.12 Parametry modelu Burgers'a dla mieszanki E (AC 22P 35/50)

Temperatura	Nr próbki	E1	E ₂	η1	η2
400	835_1	34 527	42 719	17 826	6 104
4°C	835_2	31 648	41 985	13 545	6 545
śrec	Inia	33 088	42 352	15 686	6 325
	835_3	22 440	10 583	3 656	2 452
20°C	835_4	23 904	10 876	4 970	2 461
śrec	Inia	23 172	10 730	4 313	2 457
	835_5	6 722	282	455	285
45°C	835_6	6 667	264	441	280
śrec	Inia	6 695	273	448	283

Tablica 3.13 Parametry modelu Burgers'a dla mieszanki F (AC 16W 50/70)

Temperatura	Nr próbki	E ₁	E ₂	η1	η2
400	833_1	29 569	29 613	12 443	3 436
4°C	833_2	28 287	23 435	8 044	5 417
śrec	Inia	28 928	26 524	10 244	4 427
2000	833_3	13 906	3 694	1 678	904
20°C	833_4	18 359	4 408	2 677	1 078
śrec	Inia	16 133	4 051	2 178	991
	833_5	3 209	160	121	139
45°C	833_6	3 484	147	134	131
śrec	Inia	3 347	154	128	135

Temperatura	Nr próbki	E1	E ₂	η1	η ₂
400	639_3	22 281	28 713	7 821	6 623
4°C	639_4	21 843	35 316	9 094	6 246
śrec	dnia	22 062	32 015	8 458	6 435
	639_7	14 490	10 169	3 041	2 298
20°C	639_8	16 284	12 297	3 877	2 757
śrec	Inia	15 387	11 233	3 459	2 528
	639_4_2	4 711	277	293	290
45°C	639_6	5 827	479	400	491
śrec	Inia	5 269	378	347	391

Tablica 3.14 Parametry modelu Burgers'a dla mieszanki G (AC WMS 16P 20/30 (Autostrada A1)

Tablica 3.15 Parametry modelu Burgers'a dla mieszanki H (AC WMS 16 20/30 (Autostrada A4))

Temperatura	Nr próbki	E1	E ₂	η_1	η2
	640_1_2	22 754	29 028	9 401	6 778
4°C	640_1_1	31 484	50 283	12 272	8 870
	640_2	26 037	31 780	10 964	7 464
średnia		26 758	37 030	10 879	7 704
	640_4	17 829	11 690	3 987	2 674
20°C	640_7	20 019	11 832	4 364	2 709
średnia		18 924	11 761	4 176	2 692
	640_3	6 194	304	432	322
45°C	640_4	6 420	263	503	293
śrec	Inia	6 307	284	468	308

Tablica 3.16 Parametry modelu Burgers'a dla mieszanki I (AC WMS 16 20/30 (Autostrada A4))

Temperatura	Nr próbki	E ₁	E ₂	η1	η2
100	647_1	29 040	32 916	8 945	4 782
4'0	647_7	26 641	36 489	8 745	5 961
średnia		27 841	34 703	8 845	5 372
2000	647_2	13 979	5 920	2 001	1 333
20°C	647_4	18 573	7 185	3 159	1 647
średnia		16 276	6 553	2 580	1 490
	647_8	4 575	285	242	304
45°C	647_9	4 938	296	321	314
śrec	Inia	4 757	291	282	309

Tablica 3.17 Parametry modelu Burgers'a dla mieszanki J (AC WMS 16 20/30 (dr. eksp. S7, wykonawca A))

Temperatura	Nr próbki	E1	E ₂	η1	η2
100	651_1	31 038	23 446	7 918	5 213
410	651_2	28 539	21 585	6 710	4 787
śrec	Inia	29 789	22 516	7 314	5 000
	651_3	15 433	5 393	1 960	1 193
20°C	651_5	20 167	6 952	3 063	1 610
śrec	Inia	17 800	6 173	2 512	1 402
45°C	651_9	5 309	352	294	345
	651_10	4 630	359	237	338
śrec	Inia	4 970	356	266	342

 Tablica 3.18 Parametry modelu Burgers'a dla mieszanki K (AC WMS 16 20/30 (dr. eksp. S7, wykonawca B))

Temperatura	Nr próbki	E1	E ₂	η_1	η2
400	652_2	29 273	32 614	11 720	4 654
4°C	652_3	27 795	32 443	11 003	4 707
śrec	Inia	28 534	32 529	11 362	4 681
2000	652_4	18 398	7 488	3 071	1 709
20°C	652_7	15 307	6 063	2 112	1 357
śrec	Inia	16 853	6 776	2 592	1 533
	652_5	4 609	263	269	256
45°C	652_10	5 049	300	341	299
śrec	Inia	4 829	282	305	278

3.2.3.3. Parametry reologiczne wyznaczone z krzywych wiodących

Parametry reologiczne modelu Burgers'a zostały wyznaczone dla zbioru zespolonych modułów sztywności w danych częstotliwościach oraz częstotliwości obciążenia wyznaczonych bezpośrednio z krzywej wiodącej uzyskanej z badań. Wyznaczenie krzywej wiodącej oraz parametrów reologicznych modelu Burgers'a wykonano w oparciu o metodykę podaną w punkcie 3.2.1 Wyniki obliczeń przedstawione są w poniższych tablicach:

Tablica 3.19 Parametry modelu Burgers'a dla mieszanki A (AC WMS 16W 20/30)

Temperatura	E1	E ₂	η1	η2
-10	32 234	82 120	7 275	23 280
5	29 052	34 886	6 794	8 327
20	21 921	9 983	5 869	2 229
30	15 286	3 917	3 825	878
40	9 000	1 475	1 408	333
50	4 689	659	421	141
60	2 152	382	155	76

Tablica 3.20 Parametry modelu Burgers'a dla mieszanki B (AC WMS 16W 25/55-60)

Temperatura E_1 E_2 η_1 η_2	Tamanaratura	Г	F		
	Temperatura	E ₁	E ₂	η ₁	η2

-10	29 286	66 879	6 135	18 187
5	25 857	23 109	5 663	5 404
20	18 100	5 258	4 056	1 194
30	11 282	1 730	2 577	404
40	5 732	614	761	140
50	2 535	299	176	62
60	1 017	200	60	38

Tablica 3.21 Parametry modelu Burgers'a dla mieszanki C (AC WMS 16 W 20/30 wielorodzajowy)

Temperatura	E1	E ₂	η_1	η2
-10	24 342	68 026	5 319	9 731
5	21 026	20 572	4 482	4 754
20	14 853	6 265	3 226	1 372
30	9 998	2 730	1 767	593
40	5 909	1 254	657	268
50	3 236	694	232	141
60	1 685	478	108	93

Tablica 3.22 Parametry modelu Burgers'a dla mieszanki D (AC 16W 35/50)

516				
Temperatura	E1	E ₂	η_1	η2
-10	26 725	62 519	5 676	16 975
5	23 424	24 940	6 497	5 845
20	16 790	6 784	4 013	1 503
30	11 095	2 352	2 185	540
40	6 207	756	785	177
50	2 889	281	208	71
60	1 163	135	98	28
		832		
Temperatura	E1	E ₂	η_1	η2
-10	29 885	71 054	5 924	19 455
5	26 432	26 661	5 066	6 258
20	18 873	6 383	3 336	1 442
30	12 181	1 925	2 329	463
40	6 357	552	1 794	135
50	2 678	199	1 225	45
60	950	99	167	21

Tablica 3.23 Parametry modelu Burgers'a dla mieszanki E (AC 22P 35/50)

Temperatura	E ₁	E ₂	η_1	η2
-10	33 313	91 528	9 354	26 173
5	30 326	38 680	8 219	9 333
20	23 083	10 549	5 907	2 363

30	15 974	3 658	3 359	838
40	9 149	1 118	1 411	264
50	4 309	417	515	94
60	1 696	209	155	43

Tablica 3.24 Parametry	modelu Burgers'a dla miesza	nki F (AC 16W 50/70)
------------------------	-----------------------------	----------------------

Temperatura	E ₁	E ₂	η1	η2
-10	28 635	69 969	5 654	19 495
5	25 664	21 885	5 413	5 171
20	17 626	3 981	5 153	933
30	10 329	1 082	4 194	266
40	4 584	377	607	86
50	1 671	204	114	40
60	619	159	35	29

Tablica 3.25 Parametry modelu Burgers'a dla mieszanki G (AC WMS 16P 20/30 (Autostrada A1)

Temperatura	E ₁	E ₂	η1	η_2
-10	25 257	58 185	11 263	16 035
5	23 633	24 269	16 503	5 883
20	19 841	7 559	16 872	1 761
30	15 835	3 204		758
40	11 157	1 322		321
50	6 989	617		146
60	3 964	352	1 580	77

<u>UWAGA:</u> Dla temperatur 30°C, 40°C i 50°C otrzymano błędne odczytu lepkości płynięcia ustalonego η_1 .

Tablica 3.26 Parametry modelu Burgers'a dla mieszanki H (AC WMS 16 20/30 (Autostrada A4)

Temperatura	E1	E ₂	η1	η2
-10	28 916	70 070	23 638	19 058
5	25 138	32 412	12 700	7 662
20	18 478	10 834	5 078	2 384
30	13 027	4 481	2 091	999
40	8 221	1 494	676	342
50	4 248	457	442	108
60	1 853	149	368	35

Tablica 3.27 Parametry modelu Burgers'a dla mieszanki I (AC WMS 16 20/30 (Autostrada A4)

Temperatura	E ₁	E ₂	η1	η2
-10	27 269	61 885	5 956	16 679
5	23 959	24 878	5 143	5 813

20	17 397	3 574	3 554	1 601
30	11 863	2 790	2 052	626
40	6 932	1 060	837	240
50	3 541	469	287	102
60	1 645	261	99	53

Tablica 3.28 Parametry modelu Burgers'a dla mieszanki J (AC WMS 16 20/30 (dr. eksp. S7, wykonawca A)

Temperatura	E1	E ₂	η_1	η2
-10	29 282	82 167	5 359	10 694
5	25 648	22 710	4 589	5 271
20	18 259	6 177	3 494	1 381
30	12 133	2 377	2 077	538
40	6 924	989	795	219
50	3 523	520	263	107
60	1 653	353	110	68

Tablica 3.29 Parametry modelu Burgers'a dla mieszanki K (AC WMS 16 20/30 (dr. eksp. S7, wykonawca B)

Temperatura	E ₁	E ₂	η_1	η2
-10	27 905	66 198	6 233	18 130
5	24 835	25 499	5 622	5 998
20	18 099	6 717	4 287	1 510
30	12 131	2 409	2 626	555
40	6 787	896	1 106	203
50	3 281	420	344	89
60	1 433	260	114	51

3.2.3.4. Parametry reologiczne przyjęte do dalszej analizy

Jak można zauważyć po wynikach przedstawionych w punkcie 3.2.3.4 część danych nie nadaje się do dalszego wykorzystania i trzeba zastosować korektę parametrów reologicznych. Dotyczy to parametru lepkości płynięcia ustalonego η_1 . Na poniższych rysunkach przedstawiono obliczone parametry reologiczne modelu Burgers'a bezpośrednio z badań oraz skorygowane wyznaczone z krzywej wiodącej dla wybranej mieszanki. Korekta polegała na ustalenie wartości parametrów w niskich temperaturach (-10°C, 5°C) w oparciu o linię trendu utworzoną na podstawie wyników badań oraz o ile było to możliwe z wyników uzyskanych z krzywej wiodącej w wysokich temperaturach (30°C, 40°C, 50°C, 60°C). W tablicach przedstawiono skorygowane parametry reologiczne modelu Burgers'a przyjęte do dalszych analiz dla wszystkich mieszanek. Wyniki przedstawiono w poniższych tablicach:

Rysunek 3.45 Skorygowane parametry modelu Burgers'a dla wybranej mieszanki

Tablica 3.30 Skorygowane parametry modelu Burgers'a dla mieszanki A (AC WMS 16W 20/30)

Temperatura	E1	E ₂	η_1	η2
-10	32 234	83 120	28 609	23 280
5	29 052	34 886	11 085	8 327
20	21 921	9 983	5 869	2 229
30	15 286	3 917	2 029	878
40	9 000	1 475	1 408	333
50	4 689	659	421	141
60	2 152	382	155	76

Tablica 3.31 Parametry modelu Burgers'a dla mieszanki B (AC WMS 16W 25/55-60)

Temperatura	E ₁	E ₂	η_1	η2
-10	29 286	66 879	16 827	18 187
5	25 857	23 109	9 267	5 404
20	18 100	5 258	4 056	1 194
30	11 282	1 730	2 577	404
40	5 732	614	761	140
50	2 535	299	176	62
60	1 017	200	60	38

Tablica 3.32 Parametry modelu Burgers'a dla mieszanki C (AC WMS 16 W 20/30 wielorodzajowy)

Temperatura	E ₁	E ₂	η_1	η2
-10	24 342	68 026	12 223	9 731
5	21 026	20 572	6 209	4 754
20	14 853	6 265	3 226	1 372
30	9 998	2 730	1 767	593
40	5 909	1 254	657	268
50	3 236	694	232	141
60	1 685	478	108	93

Tablica 3.33 Parametry modelu Burgers'a dla mieszanki D (AC 16W 35/50)

		516		
Temperatura	E1	E ₂	η1	η2
-10	26 725	62 519	20 465	16 975
5	23 424	24 940	10 498	5 845
20	16 790	6 784	4 013	1 503
30	11 095	2 352	2 185	540
40	6 207	756	785	177
50	2 889	281	208	71
60	1 163	135	98	28
832				

Temperatura	E ₁	E ₂	η1	η_2
-10	29 885	71 054	22 957	19 455
5	26 432	26 661	8 743	6 258
20	18 873	6 383	3 336	1 442
30	12 181	1 925	2 329	463
40	6 357	552	1 794	135
50	2 678	199	1 225	45
60	950	99	167	21

Tablica 3.34 Parametry modelu Burgers'a dla mieszanki E (AC 22P 35/50)

Temperatura	E ₁	E ₂	η1	η2
-10	33 313	91 528	38 565	26 173
5	30 326	38 680	14 581	9 333
20	23 083	10 549	5 907	2 363
30	15 974	3 658	3 359	838
40	9 149	1 118	1 411	264
50	4 309	417	515	94
60	1 696	209	155	43

Tablica 3.35 Parametry modelu Burgers'a dla mieszanki F (AC 16W 50/70)

Temperatura	E1	E ₂	η1	η2
-10	28 635	69 969	27 218	19 495
5	25 664	21 885	9 438	5 171
20	17 626	3 981	5 153	933
30	10 329	1 082	4 194	266
40	4 584	377	607	86
50	1 671	204	114	40
60	619	159	35	29

Tablica 3.36 Parametry modelu Burgers'a dla mieszanki G (AC WMS 16P 20/30 (Autostrada A1)

Temperatura	E ₁	E ₂	η1	η2
-10	25 257	58 185	15 568	16 035
5	23 633	24 269	8 055	5 883
20	19 841	7 559	3 458	1 761
30	15 835	3 204	1 663	758
40	11 157	1 322	635	321
50	6 989	617	165	146
60	3 964	352	41	77

Tablica 3.37 Parametry modelu Burgers'a dla mieszanki H (AC WMS 16 20/30 (Autostrada A4)

Temperatura E_1 E_2 η_1 η_2
--

-10	28 916	70 070	23 638	19 058
5	25 138	32 412	12 700	7 662
20	18 478	10 834	5 078	2 384
30	13 027	4 481	2 091	999
40	8 221	1 494	676	342
50	4 248	457	442	108
60	1 853	149	368	35

Tablica 3.38 Parametry modelu Burgers'a dla mieszanki I (AC WMS 16 20/30 (Autostrada A4)

Temperatura	E1	E ₂	η1	η2
-10	27 269	61 885	15 307	16 679
5	23 959	24 878	8 416	5 813
20	17 397	3 574	3 731	1 601
30	11 863	2 790	2 052	626
40	6 932	1 060	837	240
50	3 541	469	287	102
60	1 645	261	99	53

Tablica 3.39 Parametry modelu Burgers'a dla mieszanki J (AC WMS 16 20/30 (dr. eksp. S7, wykonawca A))

Temperatura	E ₁	E ₂	η_1	η2
-10	29 282	82 167	12 224	10 694
5	25 648	22 710	7 019	5 271
20	18 259	6 177	3 494	1 381
30	12 133	2 377	2 077	538
40	6 924	989	795	219
50	3 523	520	263	107
60	1 653	353	110	68

Tablica 3.40 Parametry modelu Burgers'a dla mieszanki K (AC WMS 16 20/30 (dr. eksp. S7, wykonawca B)

Temperatura	E ₁	E ₂	η_1	η2
-10	27 905	66 198	20 854	18 130
5	24 835	25 499	10 801	5 998
20	18 099	6 717	4 287	1 510
30	12 131	2 409	2 626	555
40	6 787	896	1 106	203
50	3 281	420	344	89
60	1 433	260	114	51

3.3. Literatura

- [3.1] Jaczewski M., *Właściwości niskotemperaturowe mieszanek mineralno-asfaltowych o wysokim module sztywności (AC-WMS)*, praca magisterska, opiekun pracy: Judycki J., 2009,
- [3.2] Judycki J., Analiza niektórych właściwości reologicznych drogowego betonu asfaltowego poddanego działaniu obciążeń statycznych, praca doktorska, Politechnika Gdańska, Instytut Budownictwa Lądowego, 1975,
- [3.3] Judycki J., Drogowe asfalty i mieszanki mineralno-asfaltowe modyfikowane elastomerem, Zeszyty naukowe Politechniki Gdańskiej, nr 452, Gdańsk, 1991,
- [3.4] Judycki J., *Modele reologiczne betonu asfaltowego*, Zeszyty naukowe Politechniki Gdańskiej, nr 368, 1984,
- [3.5] National Cooperative Highway Research Program, NCHRP Report 513, Simple Performance Tester for Superpave Mix Design: First-Article Development and Evaluation, Transportation Research Board, Washington, D.C., 2003,
- [3.6] National Cooperative Highway Research Program, NCHRP Report 614, *Refining the Simple Performance Tester for Use in Routine Practice*, Transportation Research Board, Washington, D.C., 2008,
- [3.7] Pszczoła M., *Spękania niskotemperaturowe warstw asfaltowych nawierzchni*, praca doktorska, Politechnika Gdańska, Gdańsk, 2006
- [3.8] Stachowicz M., Badania laboratoryjne właściwości reologicznych betonów asfaltowych o podwyższonym module sztywności, praca magisterska, opiekun pracy: Judycki J., Gdańsk, 2011,
- [3.9] VEROAD, *User manual*, Version 2000 April. Appendix B: "Additional Theory", NPC bv, Utrecht, Netherlands 2000

4. Analiza rozciągających naprężeń termicznych

4.1. Mechanizm powstawania spękań niskotemperaturowych

Obniżanie się temperatury powietrza, a w konsekwencji również temperatury warstw asfaltowych, powoduje skurcz materiału. Jeśli skurcz ten jest ograniczony, a tak się dzieje w przypadku warstw asfaltowych w konstrukcji nawierzchni, spadek temperatury powoduje powstanie naprężeń termicznych w warstwie. W odpowiednio wysokich temperaturach z uwagi na właściwości lepko-sprężyste materiału powstające naprężenia termiczne ulegają rozproszeniu poprzez zjawisko relaksacji naprężeń. W niższych temperaturach zdolność materiału do rozpraszania naprężeń jest ograniczona, co skutkuje kumulacją naprężeń. Przy dalszym obniżaniu temperatury naprężenia termiczne rosną do momentu, gdy przekroczą wytrzymałość warstwy asfaltowej na rozciąganie. Temperatura, przy której naprężenia termiczne zaczynają przewyższać wytrzymałość warstwy na rozciąganie nazywana jest temperaturą pęknięcia. Schemat powstawania spękań w niskich temperaturach przedstawiono na rysunku 4.1.

Rysunek 4.1 Schemat powstawania spękań w niskich temperaturach, [4.38]

Spękanie, które na początku pojawia się na powierzchni warstwy asfaltowej konstrukcji nawierzchni (w warstwie ścieralnej) z czasem ulega propagacji w głąb konstrukcji. Tendencji takiej sprzyja koncentracja naprężeń w rejonie pęknięcia czyli tzw. zjawisko karbu. Dodatkowym czynnikiem przyspieszającym degradację nawierzchni jest woda wnikająca w spękanie, która zamarzając w okresie zimowym może tworzyć soczewki lodowe. W pozostałych okresach roku wnikająca woda może powodować zjawisko "pompowania" drobnych cząstek podbudowy lub podłoża gruntowego powodując rozluźnienie tych materiałów, a w konsekwencji obniżenie nośności konstrukcji nawierzchni w sąsiedztwie spękania. Wszystkie wymienione czynniki wpływają na pogorszenie komfortu jazdy, zmniejszenie trwałości konstrukcji nawierzchni, a także powodują zwiększenie kosztów utrzymania i remontów dróg.

Spękania niskotemperaturowe są to najczęściej spękania poprzeczne. Wynika to z faktu, że największe naprężenia termiczne powstają w kierunku podłużnym drogi ze względu na jej nieskończoną długość w stosunku do szerokości.

4.1.1. Wpływ różnych czynników na powstawanie spękań niskotemperaturowych

W tablicy 4.1 przedstawiono szereg czynników mających wpływ na spękania niskotemperaturowe warstw asfaltowych [4.14, 4.19, 4.47]. W kolejnych punktach omówiono szerzej te czynniki.

Tablica 4.1. Czynniki mające wpływ na spękania warstw asfaltowych spowodowane oddziaływaniem niskiej temperatury, [4.14, 4.19, 4.47]

	Rodzaj czynnika	Wpływ na spękania niskotemperaturowe
1.	Czynniki materiałowe	
1.1.	Lepiszcze asfaltowe:	
	 konsystencja (tj. sztywność, lepkość i penetracja), 	Bardzo duży
	wrażliwość temperaturowa.	Bardzo duży
1.2.	Typ kruszywa (tj. kształt, tekstura	
	powierzchni i porowatość)	Od niskiego do nieznacznego
1.3.	Skład mieszanki mineralno-asfaltowej:	
	 zawartość lepiszcza asfaltowego, 	Niski
	uziarnienie kruszywa,	Niski (przed starzeniem) i wysoki (po starzeniu)
	 zawartość wypełniacza, 	Wyższa zawartość mastyksu - wyższe dopuszczalne odkształcenie rozciagające
	zawartość wolnych przestrzeni.	Niski (przed starzeniem) i wysoki (po starzeniu)
1.4.	Własności mieszanki mineralno-asfaltowej:	
	 sztywność, 	Bardzo duży
	 wytrzymałość na rozciąganie, 	Niski
	 współczynnik skurczu termicznego. 	Dužy
1.5.	Modyfikatory mieszanki lub lepiszcza (np.	Sredni
	polimery lub elastomery)	
2.	Czynniki środowiskowe	
2.1.	Temperatura	Bardzo duży
2.2.	lempo schładzania	Duży
3.	Czynniki konstrukcyjne nawierzchni	N.12
3.1.	Szerokosc nawierzchni	Nieznany
3.2.		Oa sreaniego do auzego
3.3.	wspołczynnik tarcia pomiędzy warstwą	
	petonu asiallowego a niezwiązaną	Środni
34	Podbudową Rodzaj podłoża	Niski
<u>л</u>		
4 1	Wiek nawierzchni	Bardzo duży
4.2.	Obciążenie ruchem pojazdów	Nieznany

Przedstawiony w tablicy 4.1 wpływ wytrzymałości na rozciąganie mieszanki mineralno-asfaltowej na spękania niskotemperaturowe oceniony w pracy [4.47] jako niski jest dyskusyjny. W rzeczywistości wytrzymałość na rozciąganie warstwy asfaltowej w zależności od powstających naprężeń termicznych decyduje o
temperaturze pęknięcia warstwy (patrz rys. 4.1). Dlatego też wpływ tego czynnika na powstawanie spękań niskotemperaturowych należałoby uznać za duży lub bardzo duży.

4.1.1.1. Wpływ właściwości asfaltu

Jak podaje Zeng [4.47] jednym z głównych czynników wpływających na spękania niskotemperaturowe mieszanek mineralno-asfaltowych sa właściwości asfaltu. Jego zachowanie w ujemnych temperaturach wyrażone jest zazwyczaj poprzez temperaturę łamliwości wg. Fraass'a. Inne właściwości wiążą się bezpośrednio z procesem starzenia asfaltu. Istnieją trzy główne mechanizmy związane ze starzeniem asfaltu: odparowanie, utlenianie i starzenie fizyczne. Starzenie mieszanek mineralno-asfaltowych jest głównie kojarzone ze stratą lotnych składników asfaltów podczas produkcji i wbudowania mieszanek (krótkoterminowe starzenie) oraz postępującego utleniania w materiale wbudowanym w nawierzchni (długoterminowe starzenie). W konsekwencji starzenia asfalt staje się sukcesywnie sztywniejszy i tendencja do pękania w niskich temperaturach zwiększa się. Podobnie Jung i inni [4.23], Fabb [4.9], Fortier i Vinson [4.10], Epps i in [4.8], Leahy i in. [4.29] stwierdzili, że najistotniejszym czynnikiem wpływającym na intensywność spękań niskotemperaturowych jest sztywność asfaltu. Asfalty o mniejszej lepkości (i/lub wyższej penetracji) uzyskują mniejsze sztywności wraz z obniżaniem się temperatury.

Arand w pracy [4.1] opisał badania naprężeń termicznych w laboratorium. Próbki poddane były chłodzeniu ze stałą prędkością 10⁰C/h, a następnie poddane testom rozciągania i relaksacji. Stwierdził on, że temperatura pęknięcia przy chłodzeniu wzrasta ze wzrostem temperatury mięknienia, zaś ryzyko spękań jest większe dla twardszych asfaltów. Hills i Brien [4.16] analizowali wpływ penetracji asfaltu w 25°C oraz wrażliwość temperaturową wyrażoną indeksem penetracji na temperaturę spękań. Wykazali oni, że temperatura pęknięcia asfaltu i betonu asfaltowego obniża się wraz ze wzrostem penetracji asfaltu oraz wzrostem indeksu penetracji (obniżeniem wrażliwości temperaturowej asfaltu). Zależności te podano na rysunku 4.2.

Rysunek 4.2. Wpływ penetracji w 25°C i indeksu penetracji PI na temperaturę spękań asfaltu i betonu asfaltowego, [4.16]

Modyfikacja asfaltów polimerami odgrywa istotną rolę w poprawie odporności mieszanek mineralno-asfaltowych na spękania niskotemperaturowe [4.10, 4.20, 4.28, 4.35, 4.42], natomiast zwiększenie zawartości asfaltu w granicach stosowanych w praktyce tylko nieznacznie zwiększa odporność na spękania [4.9].

4.1.1.2. Wpływ typu i uziarnienia mieszanki mineralnej

Na podstawie przeprowadzonych badań przez Fabb'a [4.9], Aranda [4.1] nie stwierdzono istotnego wpływu uziarnienia i właściwości kruszywa na odporność na spękania niskotemperaturowe. Do podobnych wniosków doszedł Jung i inni [4.25] badając dwie mieszanki mineralno-asfaltowe o tej samej krzywej uziarnienia, ale różniące rodzajem zastosowanych kruszyw. W pierwszej mieszance zastosowano kruszywo wapienne charakteryzujące się dużą absorpcją i szorstką teksturą, podczas gdy druga mieszanka mineralna zawierała kruszywo z dużą zawartością krzemionki SiO₂ i gładką powierzchnią. Badano temperaturę pęknięcia podczas chłodzenia próbek. Przeprowadzone badania nie wykazały istotnych różnic pomiędzy mieszankami zawierającymi różne rodzaje kruszyw. Sybilski i in [4.41] na podstawie badań metodą pośredniego rozciągania stwierdził, że zastosowany rodzaj kruszywa nie wpływa znacząco na sztywność mieszanki w niskich temperaturach.

Zawartość wolnych przestrzeni w mieszance mineralno-asfaltowej nie wpływa bezpośrednio na podatność mieszanki na spękania niskotemperaturowe [4.25, 4.47]. Jednak jako parametr w znacznej mierze wpływający na procesy starzenia, a przez to na wzrost sztywności warstwy asfaltowej wpływ zawartości wolnych przestrzeni pośrednio ma istotne znaczenie [4.29].

4.1.1.3. Wpływ czynników środowiskowych

Wpływ tempa chłodzenia

Temperatura ma istotny wpływ na powstawanie spękań niskotemperaturowych. Szczególnie istotne jest tempo chłodzenia warstw asfaltowych. Większe tempo chłodzenia powoduje wzrost naprężeń termicznych, a w konsekwencji możliwość szybszego pękania warstwy w obniżonej temperaturze [4.25]. Badania prowadzone przez Fromm i Phang [4.11] w Kanadzie wykazały, że tempo chłodzenia rzadko przekracza 2,7°C na godzinę.

<u>Wpływ wieku nawierzchni</u>

Kolejnym czynnikiem środowiskowym jest wiek nawierzchni. Czym starsza nawierzchnia, tym większa możliwość spękań niskotemperaturowych [4.47]. Sytuacja ta jest związana ze wzrostem sztywności warstw asfaltowych, które uległy procesowi starzenia długoterminowego.

Współczynnik rozszerzalności termicznej

Współczynnik rozszerzalności termicznej charakteryzuje zdolność materiału do zmiany objętości pod wpływem zmieniającej się temperatury. Można go wyznaczyć na podstawie objętościowego współczynnika rozszerzalności termicznej β, wyrażonego poprzez zależność [4.47]:

$$\beta = \frac{\Delta V}{V_0 \Delta T} \tag{4.1}$$

gdzie:

- β objętościowy współczynnik rozszerzalności termicznej,
- V₀ objętość materiału w odpowiadającej temperaturze,
- ∠V zmiana objętości spowodowana zmianą temperatury ∆T od odpowiadającej temperatury początkowej.

Liniowy współczynnik rozszerzalności termicznej α w przypadku mieszanek mineralno-asfaltowych zdefiniowany jest w podobny sposób. Jeśli materiał wykazuje te same właściwości w każdym kierunku, czyli jest materiałem izotropowym, a do takich materiałów zaliczamy mieszanki, to liniowy współczynnik rozszerzalności termicznej możemy określić ze wzoru:

$$\alpha = \frac{\beta}{3} \tag{4.2}$$

Wzrost zawartości asfaltu w mieszance asfaltowej powoduje wzrost współczynnika rozszerzalności termicznej, ale jednocześnie spadek sztywności mieszanki [4.23].

Zestawienie wartości współczynnika rozszerzalności termicznej betonu asfaltowego na podstawie różnych badań przeprowadzone przez Stoffels'a i Kwande [4.39] przedstawiono w tablicy 4.2.

asfaltowego	, wg [4.39]				
Badania prowadzone przez:	Typ urządzeń mierzących odkształcenie	Izeń Wymiary próbek enie [cm] T wmiaru 25,4x8,9 x71,1 wodwójny rzyrząd n.s. re'a	Tempo grzania lub chłodzenia	Zakres temperatur [ºC]	Zbadana wartość współczynnika rozszerzalności termicznej [x10 ⁻ ⁵ 1/ºC]
Domaschuk i in., 1964 [4.7]	Przyrząd pomiaru odkształceń Berry'ego	25,4x8,9 x71,1	n.s.	-51 do +15	3,15
Hooks i in., 1964 [4.17]	Dylatometry, podwójny mikroskop, Przyrząd pomiaru odkształceń Wittemore'a	n.s.	Stan równowagi	-30 do +40	2,0
Monismith i in., 1965	n.s.	1,5x2,5	n.s.	-23 do +21	2,2 – 2,5

x30,5

7.6x7.6

x40,6

7,6x7,6

x40,6 Sztywny

graniasto-

słup,

długość 5,8 cm

n.s.

2,5x2,5

x30.5

0,125°C/min

0,1°C/min

n.s.

5 i 7ºC/godz.

5, 10 i

20°C/godz.

-17 do +54

-37 do +16

-40 do +20

-55 do +10

-40 do 0

2,3 - 2,93

2,11 - 3,69

1,9 - 2,2

1,7 - 2,2

1,8 - 2,9

Tablica 4.2. Zestawienie wartości współczynnika rozszerzalności termicznej betonu asfaltowego, wg [4.39]

1993 [4.21]Loading Samplen.s.- nie sprecyzowane

Ekstensometr

Ekstensometr

Rama Brass'a

Dylatometr, nacisk

prętowy

SLS – Specimen

[4.31] Littlefield.

1967 [4.30]

Jones i in.,

1968 [4.22]

Burgess i

in., 1971

[4.4]

Osterkamp i

in., 1986

[4.32]

Janoo i in.,

4.1.1.4. Wpływ grubości warstw asfaltowych

Badania przeprowadzone w ramach testu drogowego St. Anne Road Test [4.46] wykazały, że wzrost grubości warstwy z 4 do 10 cali (od około 10 do 25 cm) spowodował spadek o połowę częstotliwości spękań przy utrzymywaniu innych zmiennych na takim samym poziomie. Podobnie badania przeprowadzone przez Palsata [4.33] w stanie Alberta w Kanadzie na sieci autostrad, badania Haas'a [4.14] oraz badania przeprowadzone w Polsce przez Szydło [4.43] na 10 odcinkach dróg krajowych wykazały, że wzrost grubości warstw asfaltowych wpływa na zmniejszenie częstotliwości spękań niskotemperaturowych.

4.1.2. Metody badań asfaltów i mieszanek mineralno-asfaltowych związane ze spękaniami niskotemperaturowymi

Zeng w pracy [4.47] zestawił metody badawcze charakteryzujące właściwości zarówno asfaltów (pierwsza grupa), jak i mieszanek mineralno-asfaltowych (druga grupa) w niskich temperaturach. Cechą łączącą wszystkie wymienione poniżej metody jest temperatura badania niższa niż 0°C. Zestawienie metod badań podano w tablicy 4.3.

Tablica 4.3. Metody badań charakteryzujące właściwości asfaltów i mieszanek mineralno-asfaltowych w niskich temperaturach, wg [4.47]

	Rodzaj metody badawczej	Mierzone parametry
1. Badania asfaltów	Dynamiczne metody mechaniczne np. Dynamiczny reometr ścinający (Dynamic shear rheometer test). [4.40]	Moduł kompleksowy (G*) Kąt przesunięcia fazowego
	Statyczne metody mechaniczne np. Reometr zginania belek (Bending beam rheometer), [4.2, 4.34, 4.40, 4.43]	Moduł sztywności Wskaźnik pełzania "m"
	Test bezpośredniego rozciągania (Direct tension test), [4.42]	Odkształcenie przy zniszczeniu
	Standardowe metody badawcze jak temperatura łamliwości wg Fraass'a, [4.47]	Temperatura
2. Badania mieszanek	Testy bezpośredniego rozciągania [4.13, 4.26],	Naprężenie i odkształcenie rozciągające; wytrzymałość na rozciąganie; moduł sztywności
mineralno- asfaltowych	Testy pośredniego rozciągania [4.6]	Naprężenie i odkształcenie rozciągające; wytrzymałość na rozciąganie; moduł sztywności
	Test pełzania przy rozciąganiu [4.11, 4.13, 4.31]	Naprężenie i odkształcenie rozciągające; moduł sztywności
	Testy zginania, [4.5]	Naprężenie i odkształcenie rozciągające; wytrzymałość na rozciąganie; moduł sztywności
	Test dwupunktowego zginania	Moduł sztywności
	Testy naprężeń rozciągających na utwierdzonej próbce TSRST (Thermal Stress Restrained Specimen Test), [4.24, 4.27]	Termicznie indukowane naprężenie rozciągające; temperatura pęknięcia
	Współczynnik reakcji termicznej Coefficient of thermal expansion/contraction tests), [4.4, 4.7, 4.17, 4.21, 4.22, 4.30, 4.31, 4.32]	Rozszerzalność termiczna
	Test relaksacji (Relaxation test), [4.38]	Zmiana naprężeń w czasie
	Test emisji akustycznej, [4.44]	Względna wytrzymałość w niskich temperaturach

Jedną z metod badań lepiszcza asfaltowego [4.3, 4.8, 4.12, 4.42] opracowanych w ramach prac nad amerykańskim programem SHRP (Strategic Highway Research Program), jest reometryczne zginanie belki BBR (Bending Beam Rheometer). Metoda ta polega na formowaniu małych próbek asfaltowych w kształcie belek i poddawaniu ich stałemu obciążeniu w łaźni chłodzącej, a następnie pomiarze ugięcia. Próbki obciąża się w środku rozpiętości. Stosuje się temperaturę badania o 10°C wyższą od najniższej oczekiwanej temperatury dla danego regionu. Całkowity czas badania wynosi 240 s. Czas badania i temperatura o 10°C wyższa od najniższej temperatury nawierzchni odpowiadają zachowaniu się asfaltu badanego po 60 min obciążenia w temperaturze najniższej. Wynikiem badania w teście BBR jest sztywność asfaltu i wskaźnik pełzania "m" określający spadek sztywności pełzania w niskich temperaturach. Sztywność pełzania S powinna być mniejsza od 300 MPa po 60s obciążenia. Natomiast wskaźnik pełzania m (m = log sztywności S/log czasu t) powinien być większy lub równy 0,3 po 60 s obciążenia. Zbyt wysoka wartość sztywności pełzania (>300 MPa) oraz zbyt niska wartość m (<0,3) mierzone po 60s obciążenia są dowodem na zbytnią sztywność asfaltu, która w konsekwencji prowadzi do przesztywnienia warstwy asfaltowej.

Kolejną metodą [4.12, 4.42] dotyczącą badań asfaltów w niskich temperaturach jest <u>test bezpośredniego rozciągania DTT (Direct Tension Test)</u>. W badaniu tym mierzy się wydłużenie niszczące, które jest miarą sprężystości bądź też kruchości asfaltu w niskiej temperaturze. Schemat badania polega na rozciąganiu próbki w temperaturze o 10°C wyższej od najniższej temperatury nawierzchni ze stałą prędkością rozciągania 0,1 mm/min do momentu zerwania. Wynikiem testu jest odkształcenie, określone jako zmiana długości próbki do zerwania w stosunku do długości początkowej. Odkształcenie to powinno być większe lub równe 1,0%.

Metoda badania właściwości mieszanek mineralno-asfaltowych w niskich temperaturach jest badanie wytrzymałości na rozciąganie termiczne przy ograniczonym odkształceniu - TSRST (Thermal Stress Restrained Specimen Test) [4.8, 4.23, 4.24, 4.27, 4.29, 4.42, 4.47]. Metoda ta symuluje zachowanie się mieszanki mineralno-asfaltowej w niskich temperaturach poprzez ochładzanie belek o wymiarach 50x50x250 mm umieszczonych w sztywnej ramie. Końce próbki są sztywno zamocowane utrzymując jej długość na stałym poziomie. Próbki są poddane ochładzaniu ze stałą prędkością 10°C/h w komorze termicznej. W wyniku obniżania sie temperatury w próbce występuje napreżenie termiczne. Pomiar temperatury oraz naprężeń termicznych wykonywany jest do momentu pęknięcia próbki czyli do momentu gdy indukowane naprężenie termiczne przekroczy wytrzymałość na rozciąganie mieszanki mineralno-asfaltowej. Istotną rolę w badaniu TSRST odgrywa tempo chłodzenia. Pomimo, że badania terenowe wskazują na wolniejsze tempo chłodzenia nawierzchni [4.11], to większość badaczy przyjmuje w teście TSRST wartość 10°C/h. Wynika to z ograniczeń laboratoryjnych, gdyż znacznie wolniejsze tempo chłodzenia, które występuje w rzeczywistych warunkach terenowych, wydłużyłoby zbytnio czas badania. Testy przeprowadzone przez Junga i Vinsona [4.23] w ramach programu SHRP wykazały, że szybsze tempo chłodzenia wpływa na większą kumulację naprężeń termicznych. W momencie pęknięcia próbek chłodzonych z większą prędkością wartość naprężeń termicznych jest większa niż w przypadku mniejszych prędkości chłodzenia.

Inna z metod dotycząca mieszanek mineralno-asfaltowych to <u>test pośredniego</u> <u>rozciągania "Indirect Tensile Test" (IDT)</u> [4.47]. W metodzie tej próbki mieszanki mineralno-asfaltowej mają kształt walca o średnicy 152 mm i wysokości 51 mm. Próbki obciążane są siłą przyłożoną wzdłuż pobocznicy walca. Naprężenia mierzone są w środku próbki prostopadle do przyłożonej siły. Test składa się z dwóch faz. W pierwszej fazie próbki badane są w krótkoterminowym teście pełzania (czas pełzania około 100 s) w temperaturach: 0°C, -10°C i -20°C. Uzyskane krzywe pełzania służą do wyznaczenia krzywej przewodniej ("master creep compliance curve") na podstawie zasady superpozycji czasowo temperaturowej. W drugiej fazie testu badana jest wytrzymałość na rozciąganie.

4.2. Wstępne obliczenia naprężeń termicznych wykonane w roku 2012

4.2.1. Wprowadzenie

Jak wykazały przeprowadzone studia literatury przedstawione powyżej, obniżanie się temperatury powoduje powstanie w warstwach bitumicznych naprężeń termicznych. Naprężenia te są jednym z podstawowych problemów w pracy nawierzchni w okresie zimowym, szczególnie w krajach charakteryzujących się stosunkowo ostrym klimatem kontynentalnym. Skutkiem ich działania jest powstanie spękań poprzecznych w warstwach bitumicznych nawierzchni. Naprężenia termiczne powstają przy zmianach temperatury warstwy i są szczególnie wysokie podczas nagłego obniżania się temperatury, gdy warstwa bitumiczna ulega usztywnieniu i przyrost naprężeń jest większy od ich relaksacji. Wielkość naprężeń zależy od szeregu czynników związanych z właściwościami warstwy bitumicznej oraz od tempa w jakim następuje spadek temperatury. Jednym z najistotniejszych czynników związanych z właściwościami warstw bitumicznych konstrukcji nawierzchni poddanych oddziaływaniu niskiej temperatury jest ich sztywność opisana modułem sztywności. Problem naprężeń termicznych i ich wpływ na powstawanie spękań niskotemperaturowych był tematem zainteresowania szeregu badaczy m.in. [4.6, 4.15, 4.16, 4.18, 4.21, 4.31, 4.36, 4.37]. Jednak nie został on dotychczas w pełni rozwiązany. We wstępnym podejściu do określenia naprężeń termicznych podjęto próbę z wykorzystaniem metody opracowanej przez Hills'a i Brien'a [4.16]. Obliczenia wykonano dla materiałów pobranych w marcu i kwietniu 2012 roku z wybranych odcinków autostrad i dróg ekspresowych w których wykorzystano betony asfaltowe o wysokim module sztywności z zastosowaniem asfaltu zwykłego 20/30.

4.2.2. Metodyka obliczeń naprężeń termicznych w oparciu o metodę opracowaną przez Hills'a i Brien'a

Do obliczeń naprężeń termicznych w rozpatrywanej warstwie podbudowy z betonu asfaltowego o wysokim module sztywności AC WMS 16 wykorzystano metodę obliczeniową Hills'a i Brien'a [4.16]. Zalety tej metody opartej na rozwiązaniu quasisprężystym polegają na prostocie obliczeń naprężeń termicznych oraz na możliwości przyjęcia modułów sztywności S według metod empirycznych. Dodatkowo dzięki odpowiedniemu przyjęciu czasu obciążenia uzyskane wyniki obliczeń naprężeń termicznych odpowiadają rzeczywistym naprężeniom w nawierzchni. Metoda ta obarczona jest również pewnym błędem, między innymi poprzez nieuwzględnianie relaksacji naprężeń.

Do analiz naprężeń termicznych przyjęto przypadek nieskończonej płyty, który jest najbardziej zbliżony do rzeczywistej pracy warstwy podbudowy asfaltowej na rozpatrywanych odcinkach autostrad i dróg ekspresowych. Szerokość jezdni wynosi 11 m. Dla tego przypadku wzór na obliczanie naprężeń termicznych ma następującą postać:

$$\sigma_x = \frac{1}{1 - \mu} \alpha \Sigma S(t, T) \Delta T \tag{4.3}$$

gdzie:

σx - sumowane naprężenia termiczne dla określonej prędkości chłodzenia V_T,

- α współczynnik liniowej rozszerzalności termicznej, dla którego założono, że jest niezależny od zmian temperatury,
- S(t,T) moduł sztywności zależny od czasu obciążenia t i temperatury T,
- ΔT wielkość przedziału temperatury; przyjęto do obliczeń $\Delta T=2^{\circ}C$,

μ - współczynnik Poissona.

Współczynnik Poissona µ dla betonu asfaltowego według Yodera i Witczaka [4.45] waha się w granicach od 0,25 do 0,5 w zależności od temperatury. W zakresie niskich temperatur przyjmuje się wartość zbliżoną do 0,25. Wzrost temperatury powoduje wzrost współczynnika Poissona. W przeprowadzonych analizach naprężeń

termicznych w zakresie rozpatrywanych temperatur niższych od 0°C przyjęto stałą wartość współczynnika Poissona równą 0,25.

Inne przyjęte założenia metody:

1. W temperaturze 0°C warstwy są w stanie bez naprężeń termicznych.

2. Temperatura obniża się od 0°C w sposób liniowy w czasie.

3. Przyjęto prędkość chłodzenia od $V_T=2^{\circ}C/h$ do $V_T=3,5^{\circ}C/h$ w zależności od odcinka analizowanej autostrady lub drogi ekspresowej i jest to wielkość najbardziej zbliżona do rzeczywistych warunków obniżania się temperatury na analizowanych odcinkach.

Przyjęto wartość współczynnika rozszerzalności liniowej α betonu asfaltowego równą: α =2,2x10-5 1/°C. Jest to wartość przyjęta na podstawie studiów literatury zagadnienia rozszerzalności termicznej betonu asfaltowego wg Stoffelsa i Kwandy [4.39].

Moduł sztywności betonu asfaltowego zależny jest od temperatury i czasu obciążenia. W analizie naprężeń termicznych w tym opracowaniu czas obciążenia wyznaczono ze wzoru:

$$t = \frac{\Delta T}{V_T} \tag{4.4}$$

gdzie:

 ΔT - jak w zależności (4.3) - wielkość przedziału temperatury, $\Delta T=2^{\circ}C$,

V_T - prędkość chłodzenia, ^oC/h.

Wyznaczony ze wzoru (4.4) czas obciążenia przedstawiono w tablicy 4.4.

Tablica 4.4. Wyznaczone wartości czasu obciążenia

Założona	prędkość	Wyznaczona	wartość
chłodzenia, V _T [°C/h]	czasu obciążenia	, t [s]
2,5		2880	
3		2400	
3,5		2060	

W zależności od przyjętego czasu obciążenia oraz od temperatury wyznaczano wartość modułu sztywności.

Na rysunku 4.3 przedstawiono sposób wyznaczania modułu sztywności dla czasu obciążenia zależnego od prędkości chłodzenia na podstawie modułów sztywności sprężystej dla czasu obciążenia 0,12 s. W oparciu o moduły sztywności sprężystej wyznaczone w z metody Shell'a oraz moduły sztywności sprężystej otrzymane z badań laboratoryjnych dla czasu obciążania 0,12 s w schemacie pośredniego rozciągania wyznaczono współczynnik przesunięcia. Moduły sztywności dla czasu obciążenia zależnego od prędkości chłodzenia określono poprzez pomnożenie modułów wyznaczonych z metody Shell'a o wyznaczony współczynnik przesunięcia.

Rysunek 4.3. Wyznaczanie modułu sztywności dla czasu obciążenia zależnego od prędkości chłodzenia na podstawie modułów sztywności sprężystej

4.2.3. Obliczenie naprężeń termicznych w warstwie podbudowy asfaltowej dla wybranej autostrady.

Na podstawie badań próbek pobranych z nawierzchni w 6 lokalizacjach określono moduły sztywności sprężystej według metody pośredniego rozciągania w aparacie NAT oraz wytrzymałości na rozciąganie pośrednie. Zestawienie wyników badań przedstawiono w tablicy 4.5.

Tablica 4.5 Zestawienie wyników badań modułów sztywności sprężystej według metody pośredniego rozciągania oraz wytrzymałości na pośrednie rozciąganie dla wybranej autostrady

L akalizaaja	Temperatura	Moduł s sprężys	ztywności stej [MPa]	Wytrzymałość na pośrednie rozciąganie [MPa]		
Lokalizacja	[°C]	Wartość średnia	Odchylenie standardowe	Wartość średnia	Odchylenie standardowe	
O divisit et 4	-10	13157	622	4,02	0,02	
Warstwa górna podbudowy	-20	20694	1242	3,49	0,59	
	-30	24005	767	4,27	0,66	
Odwiester 1	-10	13907	988	3,17	0,12	
Warstwa dolga podbudowy	-20	19901	1059	3,47	0,44	
	-30	20801	757	3,80	0,33	
Odwiest as 0	-10	15027	1694	4,25	0,64	
Udwiert nr ∠ Warstwa wiażaca	-20	19869	1025	4,16	0,39	
	-30	26008	288	4,16	0,27	

Badanie wpływu zastosowania warstw betonu asfaltowego o wysokim module sztywności (AC-WMS) w konstrukcjach nawierzchni na spękania niskotemperaturowe i na zmniejszenie powstawania deformacji trwałych.

	-10	16758	1213	4,54	0,10
Odwiert nr 2	-20	22796	1323	4,58	0,29
warstwa goma podbudowy	-30	26088	369	4,37	0,40
	-10	15538	1924	3,52	0,20
Odwiert nr 2	-20	18479	713	3,72	0,21
warstwa doina podbudowy	-30	22316	464	3,66	0,41
	-10	15904	881	3,67	0,31
Odwiert nr 3	-20	20333	796	4,19	0,06
warstwa wiąząca	-30	24500	301	3,91	0,08
	-10	15378	1112	3.55	0.05
Odwiert nr 3	-20	19260	999	4,02	0,21
Varstwa gorna podbudowy Odwiert nr 3 Varstwa dolna podbudowy	-30	21877	437	3,48	0,18
	-10	16175	888	3.73	0.14
Odwiert nr 3	-20	19623	851	3.89	0.21
Varstwa dolna podbudowy Odwiert nr 4 Warstwa wiążąca	-30	23450	1019	3,77	0,36
Odwiert nr 4 Warstwa wiążąca	-10	14701	521	3,10	0.19
Odwiert nr 4 Warstwa wiążąca	-20	19193	2707	3,89	0,42
	-30	23555	142	3,90	0,26
	-10	17028	894	4.09	0.18
Odwiert nr 4	-20	21066	1095	4,99	0,23
Warstwa górna podbudowy	-30	24956	258	4,15	0,92
	-10	17453	1000	3,79	0,35
Odwiert nr 4	-20	20358	1122	3,63	0,04
warstwa doina podbudowy	-30	21272	253	3,62	0,52
	-10	17300	973	3,46	0,18
Odwiert nr 5	-20	21465	948	3,77	0,43
vvarstwa gorna podbudowy	-30	21813	182	4,20	0,11
	-10	18547	766	3 71	0.13
Odwiert nr 5	-20	20805	1187	3.98	0 17
Warstwa dolna podbudowy	-30	21781	223	4.34	0.30
	-10	14540	735	3.58	0.06
Odwiert nr 6	-20	22077	797	3 74	0.20
Warstwa dolna podbudowy	-30	23308	238	3.68	0.27
	-10	14130	519	3.36	0.48
Odwiert nr 7	-20	20184	877	3,35	0 15
Warstwa górna podbudowy	-30	22708	267	3.58	0.30
	-10	16250	1009	3.87	0.05
Odwiert nr 7	-20	23047	886	4 33	0.24
Warstwa dolna podbudowy	-30	24781	340	4.49	0.55
	-10	13454	1498	3 46	0.50
Odwiert nr 8	-20	17278	661	3,30	0.58
Warstwa górna podbudowy	-30	19108	710	2 74	0,00
	-30	1/0100	020	2.09	0,00
Odwiert nr 8	-10	14210 01057	1014	3,90	0,11
Warstwa dolna podbudowy	-20	2100/	1014	3,31 2.25	0,41
	-30	23219	1309	১,১০	0,02

4.2.4. Obliczenie naprężeń termicznych w oparciu o wyniki badań dla odcinka 1

4.2.4.1. Obliczenie naprężeń termicznych w oparciu o wyniki badań dla warstwy wiążącej

Na rysunku 4.4 przedstawiono wyniki obliczenia naprężeń termicznych dla warstwy wiążącej. W obliczeniach przyjęto najbardziej skrajny przypadek: wyznaczono naprężenia maksymalne oraz minimalną wytrzymałość na rozciąganie pośrednie. Obliczenia wykonano uwzględniając przedziały ufności na poziomie 90% w oparciu o rozkład normalny wyników badań laboratoryjnych.

Rysunek 4.4. Naprężenia termiczne powstające w warstwie wiążącej podczas ochładzania nawierzchni

Jak wynika z przedstawionych na rysunku 4.4 wyników w przypadku przyjęcia wartości średnich modułów sztywności sprężystej oraz wytrzymałości teoretyczna temperatura pęknięcia wynosi – 26,5°C. Przy przyjęciu przedziału ufności na poziomie 90%, teoretyczna temperatura pęknięcia wynosi - 24°C.

4.2.4.2. Obliczenie naprężeń termicznych w oparciu o wyniki badań dla górnej warstwy podbudowy

Na rysunku 4.5 przedstawiono wyniki obliczenia naprężeń termicznych dla górnej warstwy podbudowy asfaltowej. W obliczeniach przyjęto najbardziej skrajny przypadek: wyznaczono naprężenia maksymalne oraz minimalną wytrzymałość na rozciąganie pośrednie. Obliczenia wykonano uwzględniając przedziały ufności na poziomie 90% w oparciu o rozkład normalny wyników badań laboratoryjnych.

Rysunek 4.5. Naprężenia termiczne powstające w warstwie podbudowy górnej podczas ochładzania nawierzchni

Jak wynika z przedstawionych na rysunku 4.5 wyników w przypadku przyjęcia wartości średnich modułów sztywności sprężystej oraz wytrzymałości teoretyczna temperatura pęknięcia wynosi – 27°C. Przy przyjęciu przedziału ufności na poziomie 90%, teoretyczna temperatura pęknięcia wynosi - 22,5°C.

4.2.4.3. Obliczenie naprężeń termicznych w oparciu o wyniki badań dla dolnej warstwy podbudowy

Na rysunku 4.6 przedstawiono wyniki obliczenia naprężeń termicznych dla dolnej warstwy podbudowy asfaltowej. W obliczeniach przyjęto najbardziej skrajny przypadek: wyznaczono naprężenia maksymalne oraz minimalną wytrzymałość na rozciąganie pośrednie. Obliczenia wykonano uwzględniając przedziały ufności na poziomie 90% w oparciu o rozkład normalny wyników badań laboratoryjnych.

Rysunek 4.6. Naprężenia termiczne powstające w warstwie podbudowy dolnej podczas ochładzania nawierzchni

Jak wynika z przedstawionych na rysunku 4.6 wyników w przypadku przyjęcia wartości średnich modułów sztywności sprężystej oraz wytrzymałości teoretyczna temperatura pęknięcia wynosi – 26°C. Przy przyjęciu przedziału ufności na poziomie 90%, teoretyczna temperatura pęknięcia wynosi - 23,5°C.

4.2.5. Obliczenie naprężeń termicznych w oparciu o wyniki badań dla odcinka 2

4.2.5.1. Obliczenie naprężeń termicznych w oparciu o wyniki badań dla warstwy wiążącej

Na rysunku 4.7 przedstawiono wyniki obliczenia naprężeń termicznych dla warstwy wiążącej. W obliczeniach przyjęto najbardziej skrajny przypadek: wyznaczono naprężenia maksymalne oraz minimalną wytrzymałość na rozciąganie pośrednie. Obliczenia wykonano uwzględniając przedziały ufności na poziomie 90% w oparciu o rozkład normalny wyników badań laboratoryjnych.

Rysunek 4.7. Naprężenia termiczne powstające w warstwie wiążącej podczas ochładzania nawierzchni

Jak wynika z przedstawionych na rysunku 4.7 wyników w przypadku przyjęcia wartości średnich modułów sztywności sprężystej oraz wytrzymałości teoretyczna temperatura pęknięcia wynosi – 25°C. Przy przyjęciu przedziału ufności na poziomie 90%, teoretyczna temperatura pęknięcia wynosi - 23°C.

4.2.5.2. Obliczenie naprężeń termicznych w oparciu o wyniki badań dla górnej warstwy podbudowy

Na rysunku 4.8 przedstawiono wyniki obliczenia naprężeń termicznych dla górnej warstwy podbudowy asfaltowej. W obliczeniach przyjęto najbardziej skrajny przypadek: wyznaczono naprężenia maksymalne oraz minimalną wytrzymałość na rozciąganie pośrednie. Obliczenia wykonano uwzględniając przedziały ufności na poziomie 90% w oparciu o rozkład normalny wyników badań laboratoryjnych.

Rysunek 4.8. Naprężenia termiczne powstające w warstwie podbudowy górnej podczas ochładzania nawierzchni

Jak wynika z przedstawionych na rysunku 4.8 wyników w przypadku przyjęcia wartości średnich modułów sztywności sprężystej oraz wytrzymałości teoretyczna temperatura pęknięcia wynosi – 24,5°C. Przy przyjęciu przedziału ufności na poziomie 90%, teoretyczna temperatura pęknięcia wynosi - 20,5°C.

4.2.5.3. Obliczenie naprężeń termicznych w oparciu o wyniki badań dla dolnej warstwy podbudowy

Na rysunku 4.9 przedstawiono wyniki obliczenia naprężeń termicznych dla dolnej warstwy podbudowy asfaltowej. W obliczeniach przyjęto najbardziej skrajny przypadek: wyznaczono naprężenia maksymalne oraz minimalną wytrzymałość na rozciąganie pośrednie. Obliczenia wykonano uwzględniając przedziały ufności na poziomie 90% w oparciu o rozkład normalny wyników badań laboratoryjnych.

Rysunek 4.9. Naprężenia termiczne powstające w warstwie podbudowy dolnej podczas ochładzania nawierzchni

Jak wynika z przedstawionych na rysunku 4.9 wyników w przypadku przyjęcia wartości średnich modułów sztywności sprężystej oraz wytrzymałości teoretyczna temperatura pęknięcia wynosi – 25°C. Przy przyjęciu przedziału ufności na poziomie 90%, teoretyczna temperatura pęknięcia wynosi - 22°C.

4.2.6. Analizy naprężeń termicznych w warstwie asfaltowej z zastosowaniem różnych asfaltów

Analizy naprężeń termicznych w warstwie asfaltowej z zastosowaniem różnych asfaltów przeprowadzono z wykorzystaniem metody Shell'a.

4.2.6.1. Analiza naprężeń termicznych w oparciu o metodę Shell'a

W oparciu o metodę Shell'a wyznaczono naprężenia termiczne dla betonu asfaltowego AC WMS z zastosowaniem asfaltu 20/30. Porównawczo przeprowadzono analizę naprężeń termicznych dla typowych betonów asfaltowych do warstwy podbudowy i warstwy wiążącej z zastosowaniem asfaltów 35/50 oraz 50/70. Naprężenia termiczne wyznaczono dla prędkości ochładzania wynoszącej 2,5°C. Wyniki obliczeń przedstawiono na rysunkach 4.10 i 4.11.

Rysunek 4.10. Naprężenia termiczne dla warstwy podbudowy wyznaczone w oparciu o Metodę Shell'a

Rysunek 4.11. Naprężenia termiczne dla warstwy wiążącej wyznaczone w oparciu o Metodę Shell'a

Jak wynika z rysunków 4.10 oraz 4.11 zastosowanie asfaltów 35/50 oraz 50/70 spowodowałoby powstanie naprężeń termicznych o mniejszych wartościach. W metodzie tej brak możliwości oceny wytrzymałości betonów asfaltowych z zastosowaniem tych asfaltów.

4.3. Podsumowanie przeprowadzonej wstępnej analizy naprężeń termicznych

Na podstawie przeprowadzonej analizy naprężeń termicznych w podbudowie asfaltowej można sformułować następujące wnioski:

- Maksymalna prędkość ochładzania nawierzchni wybranych autostrad i dróg ekspresowych wyniosła od 2°C do 4,5 °C na godzinę.
- Do obliczeń naprężeń termicznych wykorzystano metodę Hills'a i Brien'a [4.16]. Zaletami tej metody są prostota obliczeń naprężeń termicznych, możliwości przyjęcia modułów sztywności S według metod empirycznych oraz możliwość obliczenia naprężeń termicznych odpowiadających rzeczywistym naprężeniom termicznym w nawierzchni, dzięki odpowiedniemu przyjęciu czasu obciążenia. Wadą metody jest nieuwzględnienie relaksacji naprężeń.
- Teoretyczna temperatura spękania wyznaczona na podstawie wyników badań próbek pobranych z nawierzchni dla badanych warstw podbudowy i warstw wiążących wybranych autostrad i dróg ekspresowych wynosiła od 18°C do 24°C dla przedziału ufności na poziomie 90% oraz od 22°C do 26,5°C dla wartości średnich.
- Obliczenia w oparciu o metodę Shell'a wykazują powstanie mniejszych naprężeń termicznych dla betonów asfaltowych z zastosowaniem asfaltów zwykłych 35/50 oraz 50/70 w porównaniu z betonem asfaltowym z zastosowaniem asfaltu zwykłego 20/30.

4.4. Literatura

- [4.1] Arand W., Behaviour of asphalt aggregate mixes at low temperatures, IV International RILEM Symposium, Budapest, 1990,
- [4.2] Bahia H.U., Anderson D.A., The bending beam rheometer: a simple device for measuring low-temperature cracking rheology of asphalt binders, Proceedings, Association of Asphalt Paving Technologists, Vol. 61, 1992,
- [4.3] Bahia H.U., Anderson D.A., The development of the Bending Beam Rheometer; basics and critical evaluation of the rheometer, publication from symposium "Physical Properties of Asphalt Cement Binders", ASTM Committee D-4 on Road and Paving Materials, Dallas, USA 1993,
- [4.4] Burgess R.A., Kopvillem O., Young F.D., Ste. Anne Test Road Relationships Between Predicted Fracture Temperatures and Low Temperature Field Performance, Proceedings, Association of Asphalt Paving Technologists, Vol. 40, pp. 148-193, 1971,
- [4.5] Busby E., Rader L.F., Flexure stiffness properties of asphalt concrete at low temperatures, Proceedings, Association of Asphalt Paving Technologists, Vol. 41, 1972,
- [4.6] Christison J.T., Murray D.W., Anderson K.D., Stress prediction and low temperature fracture susceptibility of asphalt concrete pavements, Proceedings of the Association of Asphalt Paving Technologists, Vol. 41, 1972, p. 494-523,

- [4.7] Domaschuk L., Skarsgard P.S., Christianson R.H., Cracking of Asphalt Pavements Due to Thermal Contraction, Journal of Soils and Materials, pp. 395-402, 1964,
- [4.8] Epps A.L., A comparison of measured and predicted low temperature cracking conditions, Proceedings of the Association of Asphalt Paving Technologists, vol. 67, 1998,
- [4.9] Fabb T.R.J., *The influence of mix composition, binder properties and cooling rate on asphalt cracking at low temperatures*, Proceedings of the Association of Asphalt Paving Technologists, vol. 43, 1973,
- [4.10] Fortier R., Vinson T.S., Low-temperature cracking and aging performance of modified asphalt concrete specimens, Transportation Research Board, 69th Annual Meeting, Washington D.C., 1990,
- [4.11] Fromm H.J., Phang W.A., A study of transverse cracking of bituminous pavements, Proceedings of the Association of Asphalt Paving Technologists, Vol. 41, 1972, p. 383-423,
- [4.12] Gaweł I., Kalabińska M., Piłat J., *Asfalty drogowe*, Wydawnictwa Komunikacji i Łączności, Warszawa 2001,
- [4.13] Haas R.C.G., A method for designing asphalt pavements to minimize lowtemperature cracking, Asphalt Institute Research Report 73-1, Jan. 1973,
- [4.14] Haas R.C.G., Phang W.A., *Relationships between mix characteristics and low temperature pavement cracking*, Proceedings, Association of Asphalt Paving Technologists, Vol. 57, 1988,
- [4.15] Heukelom W., Klomp A.J.G., *Road design and dynamic loading*, Proceedings of the Association of Asphalt Paving Technologists, Vol. 33, 1964, p. 92-125,
- [4.16] Hills J.F., Brien D., The fracture of bitumens and asphalt mixes by temperature induced stresses, Proceedings of the Association of Asphalt Paving Technologists, Vol. 35, 1966, p. 292-309,
- [4.17] Hooks C.C., Goetz W.H., Laboratory Thermal Expansion Measuring Techniques Applied to Bituminous Concrete, U.S. Army Engineering Waterways Experimental Station, Corps of Engineers. Report 20. August 1964,
- [4.18] Humphreys J.S., Martin C.J., Determination of Transient Thermal Stresses in a Slab with Temperature-Dependent Viscoelastic Properties, Transactions of the Society of Rheology, Vol. VII, 155-170, 1963,
- [4.19] Isacsson U., Vinson T.S., Zeng H., The influence of material factors on the low temperature cracking of asphalt mixtures, Mechanical Tests for Bituminous Materials, RILEM Symposium, editors Di Benedetto H., Francken L., Lyon 1997,
- [4.20] Isacsson U., Lu X., *Testing and appraisal of polymer modified road bitumen state of the art*, Materials and Structures 28, 1995,
- [4.21] Janoo V., Bayer J. Jr, Walsh M., *Thermal Stress Measurements in Asphalt Concrete*, CRREL Report 93-10, July 1993,
- [4.22] Jones G.M., Darter M.I., Littlefield G., Thermal Expansion-Contraction of Asphaltic Concrete, Proceedings, Association of Asphalt Paving Technologists, Vol. 37, pp. 56-77, 1968,
- [4.23] Jung D.H., Vinson T.S., *Low temperature cracking: test selection* Strategic Highway Research program SHRP-A-400, Washington D.C., 1994,
- [4.24] Jung D.H. Vinson T.S., *Low temperature cracking: binder validation* Strategic Highway Research program SHRP-A-399, Washington D.C. 1994,

- [4.25] Jung D.H., Vinson T.S., *Low temperaure cracking resistance of asphalt concrete mictures*, Proceedings of the Association of Asphalt Paving Technologists, Vol. 62, 1993, p. 54-92,
- [4.26] Kallas B.F., *Low temperature mechanical properties of asphalt concrete*, Asphalt Institute Research Report, No. RR-82-3, 1982,
- [4.27] Kanerva K.H., Vinson T.S. Zeng H., Low temperature cracking: field validation of the thermal stress restrained specimen test Strategic Highway Research program SHRP-A-401, Washington D.C. 1994,
- [4.28] King G.N., King H.W., Harders O., Arand W., Planche P., Influence of asphalt grade and polymer concentration on the low temperature performance of polymer modified asphalt, Proceedings of the Association of Asphalt Paving Technologists, Vol. 62, 1993, p. 1-22,
- [4.29] Leahy R.B., Monismith C.L., Lundy J.R., Performance-based properties of asphalt concrete mixes, publication from symposium "Engineering Properties of Asphalt Mixtures and the Relationship to their Performance", ASTM Committee D-4 on Road and Paving Materials, Phoenix, USA, 1994,
- [4.30] Littlefield G., *Thermal Expansion and Contraction Characteristics of Utah Asphaltic Concretes*, Proceedings, Association of Asphalt Paving Technologists, Vol. 36, pp. 673-701, 1967,
- [4.31] Monismith C., Secor G., Secor K., Temperature induced stresses and deformations in asphalt concrete, Proceedings, Association of Asphalt Paving Technologists, Vol. 34, 1965,
- [4.32] Osterkamp T.E., Baker G.C., Hamer B.T., Gosink J.P., Peterson J.K., Groul V., Low-Temperature Transverse Cracks in Asphalt Pavements in Interior Alaska, Alaska Department of Transportation and Public Facilities, Report No. AK-RD-86-26, 1986,
- [4.33] Palsat D.P., *A study of low temperature transverse cracking in Alberta*, Proceedings Canadian Technical Asphalt Association, 1988, p. 218-235,
- [4.34] Petersen J.C., Robertson R.E., Branthaver J.F., Anderson D.A., *Binder characterization and evaluation*. Final Report to Strategic Highway Research Program, Asphalt Project A-002A, 1993,
- [4.35] Raad L., Saboundjian S., Sebaaly P., Epps J., Thermal cracking models for AC and modified AC mixes in Alaska, Transportation Research Board Meeting, Washington, D.C. 1998,
- [4.36] Secor K.E., Monismith C.L., *Viscoelastic properties of asphalt concrete*, Highway Research Board Proceedings, 1962,
- [4.37] Still P.B., *Thermal stresses in bituminous flexible pavements*, Transport and Road Research Laboratory, Department of the Environment, Report LR 433, 1972,
- [4.38] Stock A.F., Arand W., Low temperature cracking in polymer modified binders, Proceedings of the Association of Asphalt Paving Technologists, vol. 62, 1993, p. 23-53,
- [4.39] Stoffels S.M., Kwanda D., Determination of the Coefficient of Thermal Contraction of Asphalt Concrete Using the Resistance Strain Gage Technique, Proceedings, Association of Asphalt Paving Technologists, Vol. 65, pp. 73-90, 1996,
- [4.40] Sybilski D., Wymagania i metody badań drogowych lepiszczy bitumicznych według strategicznego drogowego programu badawczego (SHRP) Stanów Zjednoczonych A.P., Drogownictwo nr 3, 1995, s. 66-72,

- [4.41] Sybilski D., Styk S., Stiffnes modulus of bituminous mixtures: Influence of temperature, mixture's type and binder, Mechanical Tests for Bituminous Materials, RILEM Symposium, editors Di Benedetto H., Francken L., Lyon 1997,
- [4.42] Sybilski D., Ocena właściwości niskotemperaturowych lepiszczy asfaltowych i mieszanek mineralno-asfaltowych, Wydawnictwo Instytutu Badawczego Dróg i Mostów – Drogi i Mosty, nr 2/2004,
- [4.43] Szydło A., *Wpływ wybranych parametrów na spękania skurczowe nawierzchni bitumicznych*, Drogownictwo nr 4-5, 1989, s. 95 97,
- [4.44] Valkering C.P., Jongeneel D.J., Acoustic emission for evaluating the relative performance of asphalt mixes under thermal loading conditions, Proceedings, Association of Asphalt Paving Technologists, Vol. 60, 1991, pp. 160-187,
- [4.45] Yoder E.J., Witczak M.W., *Principles of pavement design* Second edition. A Wiley Interscience Publication, 1975, p. 280-282
- [4.46] Young F.D., Deme I., Burgess R.A., Kopvillem O., Ste. Anne Test Road construction summary and performance after two years service, Proceedings Canadian Technical Asphalt Association, 1969, p. 50-109,
- [4.47] Zeng H., On the low temperature cracking of asphalt pavements, Report TRITA-IP FR 95-7, Division of Highway Engineering, Royal Institute of Technology, Stockholm, Sweden, 1995,
- [4.48] Pszczoła M., *Spękania niskotemperaturowe warstw asfaltowych nawierzchni*, praca doktorska, Politechnika Gdańska, Gdańsk, 2006.

5. Analiza konstrukcji nawierzchni w warunkach podwyższonych temperatur z wykorzystaniem programu VEROAD

5.1. Wprowadzenie

5.1.1. Modele materiałowe warstw konstrukcji nawierzchni

W obliczeniach przyjętych konstrukcji nawierzchni wykorzystano dwa modele materiałowe – sprężystości Hooke'a (do warstw ścieralnych, podbudów z kruszyw oraz podłoży gruntowych) oraz lepkosprężystości Burgers'a (do warstw wiążących i podbudów asfaltowych).

Model sprężystości Hooke'a warstw zakłada, że wszystkie odkształcenia i przemieszczenia powstałe w wyniku działającego obciążenia w modelu mają charakter sprężysty – są w pełni odwracalne po ustąpieniu tego obciążenia. Do opisu zachowania się materiału wymagane są dwa parametry – moduł sprężystości E [MPa] lub moduł sztywności S [MPa] oraz współczynnik Poissona v [-]. W przypadku modelowania warstw asfaltowych jako wykonanych z materiału sprężystego parametry tych warstw uzależnia się od temperatury. Dla warstw innych niż asfaltowe parametry przyjmuje się parametry stałe, niezależne od temperatury warstwy.

Model lepkosprężystości materiałowej (w opracowaniu zastosowano model Burgers'a) łączy w sobie właściwości sprężyste oraz lepkie materiału. Te ostatnie odpowiedzialne są za powstawanie trwałych odpowiedzi konstrukcji na przyłożone obciążenie w postaci deformacji i odkształceń nieodwracalnych. Materiały lepkosprężyste charakteryzuje zmienność ich właściwości w zależności od - w temperaturach niższych pracują bardziej temperatury spreżyście. w temperaturach wyższych natomiast wykazują znaczące właściwości lepkie. Do opisu materiału lepkosprężsytego za pomocą modelu Burgers'a wymagana jest znajomość 5 parametrów: modułów sprężystości E1 [MPa] i E2 [MPa], współczynników lepkości: η₁ [MPa] i η₂ [MPa.s] i współczynnika Poissona v [-]. W modelu tym wszystkie parametry zawsze zależą od temperatury.

Moduły sztywności, moduły sprężystości i współczynniki lepkości pochodzą z badań mieszanek mineralno-asfaltowych przeprowadzonych w różnych temperaturach. Wraz ze wzrostem temperatury wartości parametrów materiałowych MMA ulegają zmniejszeniu.

Wartość współczynnika Poissona warstw asfaltowych rośnie wraz z temperaturą do maksymalnej możliwej wartości wynoszącej 0,5. Współczynnik Poissona przyjęto zgodnie z zależnością podawaną przez M. W. Witczaka oraz E. J. Yodera [5.5] prezentowaną na rysunku 5.1.

Rysunek 5.1. Zależność współczynnika Poissona od temperatury w warstwach asfaltowych wg [5.5]

5.1.2. Rozkład temperatury w nawierzchni

Do wstępnego obliczenia rozkładu temperatury na głębokości warstw asfaltowych zastosowano model opracowany przez Vilijoena [5.1].

Model przewiduje nieliniowy rozkład temperatur maksymalnych na głębokości warstw asfaltowych zgodnie z zależnością:

$$T_{z,max} = T_{0,max} \times (1 - 4,237 z + 29,5 z^2 - 85,3 z^3)$$
(5.1)

gdzie:

T_{z,max} - szacowana maksymalna temperatura nawierzchni na głębokości z, [°C]

T_{0,max} - maksymalna temperatura powierzchni warstwy ścieralnej, [°C]

z - głębokość szacowania temperatury w nawierzchni, [m].

Dla każdej z warstw wyznaczono temperaturę reprezentatywną, tj. reprezentującą rozkład temperaturowy na grubości całej warstwy. Temperatura to jest niezbędną do określenia parametrów materiałowych dla każdej warstwy asfaltowej w nawierzchni. W opracowaniu przyjęto, że reprezentatywną temperaturą będzie temperatura występująca w środku grubości tych warstw (temperatura średnia na grubości warstwy).

5.1.3. Symulacje w VEROAD

Symulacje przeprowadzane w programie VEROAD z wykorzystaniem modelu lepkosprężystego do warstw asfaltowych pozwalają wyznaczyć trwałe deformacje i odkształcenia nawierzchni w wysokich temperaturach warstw dla poruszającego się z zadaną prędkością koła. Najbardziej reprezentatywnym parametrem trwałej odpowiedzi nawierzchni na zadane obciążenie jest przemieszczenie pionowe U_z [mm]. Przemieszczenie to jest sumą deformacji (przemieszczeń) trwałych i odwracalnych. Można badać je na dowolnej głębokości w nawierzchni w przekroju podłużnym w płaszczyźnie ruchu koła oraz dowolnie położonym na osi ruchu koła przekroju poprzecznym.

5.2. Wstępne obliczenia na podstawie wyników badań dynamicznych

5.2.1. Dane przyjęte do obliczeń

PRZYJĘTE KONSTRUKCJE NAWIERZCHNI

Obliczenia wstępne przeprowadzono dla konstrukcji nawierzchni do kategorii ruchu KR4-KR6 dla okresu obliczeniowego 20 lat. Analizie wyników obliczeń poddano:

- podstawowe konstrukcje z warstwą ścieralną wykonaną z SMA, warstwą wiążącą i podbudową asfaltową wykonanymi z betonu asfaltowego o wysokim module sztywności (AC WMS) i podbudową z kruszywa łamanego stabilizowanego mechanicznie (KŁSM) dla okresu obliczeniowego 20 lat, wg [5.2] – rysunek 5.2.;
- konstrukcje porównawcze z warstwą ścieralną wykonaną z SMA, warstwą wiążącą i podbudową asfaltową wykonanymi z betonu asfaltowego (AC) i podbudową z kruszywa łamanego (KŁSM), wg [5.3] – rysunek 5.3.

Rysunek 5.2. Podstawowe konstrukcje poddane analizie w programie VEROAD z wykorzystaniem AC WMS dla KR4-KR6 wg [5.2].

Rysunek 5.3. Konstrukcje porównawcze poddane analizie w programie VEROAD z wykorzystaniem betonu asfaltowego AC dla KR4-KR6 wg [5.3].

MATERIAŁY DO WARSTW ASFALTOWYCH

Do warstw asfaltowych we wstępnych obliczeniach zastosowano następujące mieszanki mineralno-asfaltowe:

- do warstw ścieralnych we wszystkich konstrukcjach (zarówno podstawowych jak i porównawczych) – SMA 11 50/70,
- do warstw wiążących konstrukcji podstawowych mieszanka A (AC WMS 16 W 20/30),
- do warstw wiążących konstrukcji porównawczych mieszanka D (AC 16 W 35/50),
- do warstw podbudowy asfaltowej konstrukcji podstawowej mieszanka G (AC WMS 16 P 20/30 (kruszywo wapienne, autostrada A1),
- do warstw podbudowy asfaltowej konstrukcji porównawczej mieszanka E (AC 22P 35/50).

ROZKŁAD TEMPERATURY W WARSTWACH ASFALTOWYCH

Obliczenia wykonano dla parametrów warstw asfaltowych zależnych od temperatury szacowanej za pomocą wzoru Vilijoena (5.1). Założono 6 poziomów obliczeń – dla temperatury powierzchni warstwy ścieralnej od 30°C do 55°C z gradacją co 5°C. Rozkład temperatury na głębokości warstw asfaltowych prezentuje, przy różnym stopniu nagrzania nawierzchni, rysunek 5.4.

Rysunek 5.4. Temperatura w warstwach asfaltowych $T_{z,max}$ na głębokości z przy założonych do obliczeń temperaturach nagrzanej powierzchni warstwy ścieralnej $T_{0,max}$

Temperatury reprezentatywne dla poszczególnych warstw asfaltowych w konstrukcjach nawierzchni poddanych obliczeniom i analizie zebrano w tablicy 5.1.

Tablica 5.1. Reprezentatywne temperatury warstw asfaltowych w zależności od temperatury powierzchni warstwy ścieralnej.

	Kat	Dedrei	Położenie			Tz,ma	[°C] או		
Konstr.	ruchu	u warstwy	warstwy T _{o,r} z [m] 30	T _{0,max} = 30°C	T _{0,max} = 35°C	T _{0,max} = 40°C	T _{0,max} = 45°C	T _{0,max} = 50°C	T _{0,max} = 55°C
aw	KR4	Ś	0,010	28,8	33,6	38,4	43,2	48,0	52,8
dst		w	0,050	25,5	29,8	34,0	38,3	42,6	46,8
od		Р	0,155	22,0	25,7	29,4	33,0	36,7	40,4

Badanie wpływu zastosowania warstw betonu asfaltowego o wysokim module sztywności (AC-WMS) w konstrukcjach nawierzchni na spękania niskotemperaturowe i na zmniejszenie powstawania deformacji trwałych.

]	Ś	0,010	28,8	33,6	38,4	43,2	48,0	52,8
	KR5	w	0,050	25,5	29,8	34,0	38,3	42,6	46,8
		Р	0,165	21,6	25,2	28,8	32,4	36,0	39,6
		Ś	0,010	28,8	33,6	38,4	43,2	48,0	52,8
	KR6	w	0,050	25,5	29,8	34,0	38,3	42,6	46,8
		Р	0,175	21,1	24,7	28,2	31,7	35,2	38,8
	KR4	Ś	0,025	27,3	31,9	36,4	41,0	45,6	50,1
		w	0,090	23,9	27,8	31,8	35,8	39,8	43,7
za		Р	0,180	20,9	24,3	27,8	31,3	34,8	38,3
ŇC		Ś	0,025	27,3	31,9	36,4	41,0	45,6	50,1
vna	KR5	w	0,090	23,9	27,8	31,8	35,8	39,8	43,7
róv		Р	0,200	19,5	22,8	26,0	29,3	32,5	35,8
bq		Ś	0,025	27,3	31,9	36,4	41,0	45,6	50,1
	KR6	w	0,090	23,9	27,8	31,8	35,8	39,8	43,7
		Р	0,220	17,6	20,6	23,5	26,4	29,4	32,3

PARAMETRY WARSTW ASFALTOWYCH

W obliczeniach analizowanych konstrukcji nawierzchni użyto dla warstw asfaltowych dwóch różnych modeli materiałowych:

- sprężystego modelu Hooke'a do warstw ścieralnych z SMA (reprezentowanego przez moduł sztywności sprężystej S),
- lepkosprężystego modelu Burgersa do warstw wiążących i podbudów asfaltowych wykonanych z AC lub AC WMS (reprezentowanego przez cztery parametry: E₁, E₂, η₁ i η₂).

Dane dla warstw ścieralnych pochodzą z wyników badań mieszanki SMA w temperaturach od -10°C do +20°C, wykonanych w Laboratorium Drogowym PG, które uzyskano na drodze ekstrapolacji do wyższych temperatur.

Parametry modelu Burgersa dla warstw wiążących i podbudów asfaltowych pochodzą z interpolacji parametrów lepkosprężystych wyznaczonych w module DEBUROAD programu VEROAD na podstawie modułów dynamicznych i kątów przesunięć fazowych. Te uzyskano w badaniach w zakresie temperatur od -5°C do 60°C w urządzeniu AMPT/SPT (Asphalt Mixture Performance Tester) firmy IPC Global.

Współczynniki Poissona dla warstw asfaltowych przyjmowano w zależności od temperatury warstwy asfaltowej zgodnie z zależnością podaną przez Yodera i Witczaka [5.5].

Tablica	5.2.	Parametry	materiałowe	warstw	asfaltowych	konstrukcji	nawierzchni	dla
$T_{0,max} =$	30°C	C.						

-		Rodzai				Parametry	y warstw		
konstrukcje podstawowe	Kat. ruchu	warstw y	Materiał warstwy	<i>E</i> ₁ [MPa]	<i>E</i> ₂ [MPa]	η₁ [Mpa.s]	η₂ [Mpa.s]	S [Mpa]	v [-]
		Ś	SMA 11 50/70	-	-	-	-	3 133	0,43
	KR4	W	(A) AC WMS 16 W 20/30	18 667	4 986	3 924	1 167	-	0,41
e e		Р	(G) AC WMS 16 P 20/30	20 287	5 330	3 024	1 339	-	0,40
vov Vov		Ś	SMA 11 50/70	-	-	-	-	3 133	0,43
stru stav	KR5	W	(A) AC WMS 16 W 20/30	18 667	4 986	3 924	1 167	-	0,41
spo		Р	(G) AC WMS 16 P 20/30	20 526	5 492	3 108	1 381	-	0,39
х q	KR6	Ś	SMA 11 50/70	-	-	-	-	3 133	0,43
		W	(A) AC WMS 16 W 20/30	18 667	4 986	3 924	1 167	-	0,41
		Р	(G) AC WMS 16 P 20/30	20 811	5 691	3 210	1 433	-	0,39
		Ś	SMA 11 50/70	-	-	-	-	3 363	0,42
	KR4	W	(D) AC 16 W 35/50	14 881	3 813	3 606	928	-	0,41
ze ze		Р	(E) AC 22P 35/50	24 101	7 741	6 494	1 921	-	0,39
kc.		Ś	SMA 11 50/70	-	-	-	-	3 363	0,42
stru vna	KR5	W	(D) AC 16 W 35/50	14 881	3 813	3 606	928	-	0,41
ons		Р	(E) AC 22P 35/50	25 464	8 824	7 098	2 199	-	0,38
х од		Ś	SMA 11 50/70	-	-	-	-	3 363	0,42
	KR6	W	(D) AC 16 W 35/50	14 881	3 813	3 606	928	-	0,41
		Р	(E) AC 22P 35/50	27 412	10 574	7 999	2 650	-	0,37

Tablica 5.3. Parametry materiałowe warstw asfaltowych konstrukcji nawierzchni dla $T_{0,\text{max}}=35\,^{\circ}\text{C}$.

_		Rodzai				Parametry	y warstw		
Т _{0,max} 35°С	KR4 Social KR4 KR5 KR6 KR5 KR5	warstw y	Materiał warstwy	<i>E</i> ₁ [MPa]	<i>E</i> ₂ [MPa]	η₁ [Mpa.s]	η ₂ [Mpa.s]	S [Mpa]	v [-]
		Ś	SMA 11 50/70	-	-	-	-	2 488	0,45
	KR4	W	(A) AC WMS 16 W 20/30	15 423	3 578	2 243	823	-	0,43
e e		Р	(G) AC WMS 16 P 20/30	18 185	4 062	2 329	1 013	-	0,42
ò kcj		Ś	SMA 11 50/70	-	-	-	-	2 488	0,45
itru taw	KR5	W	(A) AC WMS 16 W 20/30	15 423	3 578	2 243	823	-	0,43
suc	dsi	Р	(G) AC WMS 16 P 20/30	18 449	4 206	2 412	1 050	-	0,41
ਤ ਕ	KR6	Ś	SMA 11 50/70	-	-	-	-	2 488	0,45
		W	(A) AC WMS 16 W 20/30	15 423	3 578	2 243	823	-	0,43
		Р	(G) AC WMS 16 P 20/30	18 766	4 385	2 513	1 096	-	0,41
		Ś	SMA 11 50/70	-	-	-	-	2 703	0,44
	KR4	W	(D) AC 16 W 35/50	12 360	2 603	2 631	629	-	0,43
ze ze		Р	(E) AC 22P 35/50	20 803	5 543	5 120	1 361	-	0,41
kc.		Ś	SMA 11 50/70	-	-	-	-	2 703	0,44
stru vna	KR5	W	(D) AC 16 W 35/50	12 360	2 603	2 631	629	-	0,43
ons róv		Р	(E) AC 22P 35/50	22 280	6 458	5 719	1 594	-	0,40
х od		Ś	SMA 11 50/70	-	-	-	-	2 703	0,44
	KR6	W	(D) AC 16 W 35/50	12 360	2 603	2 631	629	-	0,43
	KK6	Р	(E) AC 22P 35/50	24 409	7 976	6 628	1 981	-	0,39

Tablica 5.4.	Parametry	materiałowe	warstw	asfaltowych	konstrukcji	nawierzchni dla
$T_{0,max} = 40^{\circ}C$	Σ.			-	-	

_		Rodzai				Parametry	y warstw		
I _{0,max} 40°C	max °C KR4 Modstawowe KR4 KR5 KR6 KR6 KR4 KR5	warstw	Materiał warstwy	<i>E</i> ₁ [MPa]	<i>E</i> ₂ [MPa]	η₁ [Mpa.s]	η₂ [Mpa.s]	S [Mpa]	v [-]
		Ś	SMA 11 50/70	-	-	-	-	1 976	0,47
	KR4	W	(A) AC WMS 16 W 20/30	12 519	2 567	1 382	581	-	0,45
e e		Р	(G) AC WMS 16 P 20/30	16 194	3 095	1 751	766	-	0,43
vov		Ś	SMA 11 50/70	-	-	-	-	1 976	0,47
stru stav	KR5	W	(A) AC WMS 16 W 20/30	12 519	2 567	1 382	581	-	0,45
spo		Р	(G) AC WMS 16 P 20/30	16 480	3 221	1 830	799	-	0,43
х q	KR6	Ś	SMA 11 50/70	-	-	-	-	1 976	0,47
		W	(A) AC WMS 16 W 20/30	12 519	2 567	1 382	581	-	0,45
		Р	(G) AC WMS 16 P 20/30	16 823	3 378	1 925	838	-	0,43
		Ś	SMA 11 50/70	-	-	-	-	2 172	0,46
	KR4	W	(D) AC 16 W 35/50	10 089	1 777	1 854	426	-	0,44
je		Р	(E) AC 22P 35/50	17 759	3 970	3 972	965	-	0,43
ikc]		Ś	SMA 11 50/70	-	-	-	-	2 172	0,46
stru vna	KR5	W	(D) AC 16 W 35/50	10 089	1 777	1 854	426	-	0,44
ons		Р	(E) AC 22P 35/50	19 319	4 727	4 546	1 155	-	0,42
ъ о		Ś	SMA 11 50/70	-	-	-	-	2 172	0,46
	KR6	W	(D) AC 16 W 35/50	10 089	1 777	1 854	426	-	0,44
		Р	(E) AC 22P 35/50	21 588	6 016	5 435	1 481	-	0,40

Tablica 5.5. Parametry materiałowe warstw asfaltowych konstrukcji nawierzchni dla $T_{0,\text{max}}$ = 45°C .

_		Rodzai		Parametry warstw							
I _{0,max} 45°C	Kat. ruchu	warstw y	Materiał warstwy	<i>E</i> ₁ [MPa]	<i>Е</i> ₂ [MPa]	η₁ [Mpa.s]	η₂ [Mpa.s]	S [Mpa]	v [-]		
		Ś	SMA 11 50/70	-	-	-	-	1 569	0,48		
	KR4	W	(A) AC WMS 16 W 20/30	9 954	1 842	901	410	-	0,47		
je ve		Р	(G) AC WMS 16 P 20/30	14 315	2 359	1 279	580	-	0,45		
ikc. vov	KR5	Ś	SMA 11 50/70	-	-	-	-	1 569	0,48		
itru taw		W	(A) AC WMS 16 W 20/30	9 954	1 842	901	410	-	0,47		
spc		Р	(G) AC WMS 16 P 20/30	14 618	2 467	1 350	607	-	0,45		
¥ Q	KR6	Ś	SMA 11 50/70	-	-	-	-	1 569	0,48		
		W	(A) AC WMS 16 W 20/30	9 954	1 842	901	410	-	0,47		
		Р	(G) AC WMS 16 P 20/30	14 983	2 603	1 439	641	-	0,44		
		Ś	SMA 11 50/70	-	-	-	-	1 745	0,47		
	KR4	W	(D) AC 16 W 35/50	8 068	1 213	1 254	288	-	0,46		
je ize		Р	(E) AC 22P 35/50	14 970	2 843	3 027	684	-	0,44		
ikc. awc		Ś	SMA 11 50/70	-	-	-	-	1 745	0,47		
stru vna	KR5	W	(D) AC 16 W 35/50	8 068	1 213	1 254	288	-	0,46		
ons róv		Р	(E) AC 22P 35/50	16 580	3 460	3 559	837	-	0,43		
k po		Ś	SMA 11 50/70	-	-	-	-	1 745	0,47		
	KR6	W	(D) AC 16 W 35/50	8 068	1 213	1 254	288	-	0,46		
		Р	(E) AC 22P 35/50	18 949	4 538	4 407	1 108	-	0,42		

Tablica	5.6.	Parametry	materiałowe	warstw	asfaltowych	konstrukcji	nawierzchni	dla
$T_{0,max} =$	50°C	Ο.						

-		Rodzai		Parametry warstw							
I _{0,max} 50°C	Kat. ruchu	warstw y	Materiał warstwy	<i>E</i> ₁ [MPa]	<i>Е</i> ₂ [MPa]	η₁ [Mpa.s]	η₂ [Mpa.s]	S [Mpa]	v [-]		
		Ś	SMA 11 50/70	-	-	-	-	1 246	0,49		
	KR4	W	(A) AC WMS 16 W 20/30	7 729	1 321	615	289	-	0,48		
e e		Р	(G) AC WMS 16 P 20/30	12 547	1 798	902	439	-	0,46		
vov	KR5	Ś	SMA 11 50/70	-	-	-	-	1 246	0,49		
stru tav		W	(A) AC WMS 16 W 20/30	7 729	1 321	615	289	-	0,48		
suo		Р	(G) AC WMS 16 P 20/30	12 864	1 890	965	462	-	0,46		
by ke	KR6	Ś	SMA 11 50/70	-	-	-	-	1 246	0,49		
		W	(A) AC WMS 16 W 20/30	7 729	1 321	615	289	-	0,48		
		Р	(G) AC WMS 16 P 20/30	13 245	2 005	1 043	491	-	0,46		
	KR4	Ś	SMA 11 50/70	-	-	-	-	1 402	0,49		
		W	(D) AC 16 W 35/50	6 297	828	808	195	-	0,47		
je ze		Р	(E) AC 22P 35/50	12 437	2 036	2 263	485	-	0,45		
ikc. avc		Ś	SMA 11 50/70	-	-	-	-	1 402	0,49		
stru vna	KR5	W	(D) AC 16 W 35/50	6 297	828	808	195	-	0,47		
ons róv		Р	(E) AC 22P 35/50	14 064	2 532	2 743	607	-	0,45		
ъ ро		Ś	SMA 11 50/70	-	-	-	-	1 402	0,49		
	KR6	W	(D) AC 16 W 35/50	6 297	828	808	195	-	0,47		
		Р	(E) AC 22P 35/50	16 491	3 423	3 529	828	-	0,43		

Tablica 5.7. Parametry materiałowe warstw asfaltowych konstrukcji nawierzchni dla $T_{0,max}$ = 55°C .

		Rodzai		Parametry warstw							
I _{0,max} 55°C	Kat. ruchu	warstw y	Materiał warstwy	<i>E</i> ₁ [MPa]	<i>E</i> ₂ [MPa]	η₁ [Mpa.s]	η₂ [Mpa.s]	S [Mpa]	v [-]		
		Ś	SMA 11 50/70	-	-	-	-	989	0,50		
	KR4	W	(A) AC WMS 16 W 20/30	5 844	948	435	204	-	0,49		
e e		Р	(G) AC WMS 16 P 20/30	10 891	1 370	610	332	-	0,47		
vo kc	KR5	Ś	SMA 11 50/70	-	-	-	-	989	0,50		
stru stav		W	(A) AC WMS 16 W 20/30	5 844	948	435	204	-	0,49		
spc		Р	(G) AC WMS 16 P 20/30	11 217	1 447	662	351	-	0,47		
х q	KR6	Ś	SMA 11 50/70	-	-	-	-	989	0,50		
		W	(A) AC WMS 16 W 20/30	5 844	948	435	204	-	0,49		
		Р	(G) AC WMS 16 P 20/30	11 610	1 545	729	375	-	0,47		
	KR4	Ś	SMA 11 50/70	-	-	-	-	1 127	0,50		
		W	(D) AC 16 W 35/50	4 776	565	494	132	-	0,48		
je		Р	(E) AC 22P 35/50	10 157	1 458	1 660	343	-	0,47		
N C		Ś	SMA 11 50/70	-	-	-	-	1 127	0,50		
stru vna	KR5	W	(D) AC 16 W 35/50	4 776	565	494	132	-	0,48		
ons		Р	(E) AC 22P 35/50	11 770	1 853	2 078	440	-	0,46		
k. po		Ś	SMA 11 50/70	-	-	-	-	1 127	0,50		
	KR6	W	(D) AC 16 W 35/50	4 776	565	494	132	-	0,48		
		Р	(E) AC 22P 35/50	14 215	2 582	2 789	619	-	0,45		

Badanie wpływu zastosowania warstw betonu asfaltowego o wysokim module sztywności (AC-WMS) w konstrukcjach nawierzchni na spękania niskotemperaturowe i na zmniejszenie powstawania deformacji trwałych.

PARAMETRY PODBUDOWY Z KRUSZYWA

Przyjęto zarówno dla konstrukcji podstawowych jak i porównawczych podbudowę z kruszywa łamanego stabilizowanego mechanicznie o module sprężystości E = 400 MPa oraz współczynniku Poissona v = 0,30. Parametry podbudowy z kruszywa uniezależniono od temperatury.

PARAMETRY PODŁOŻA

Dla konstrukcji nawierzchni przeznaczonych dla ruchu KR4 obliczenia przeprowadzono dla modułu podłoża E = 100 MPa oraz dla konstrukcji dla ruchu o kategorii KR5 i KR6 dla modułu podłoża E = 120 MPa. W obu przypadkach przyjęto stały współczynnik Poissona podłoża gruntowego na poziomie v = 0,35. Parametry podłoża nawierzchni uniezależniono od temperatury.

PARAMETRY OBCIĄŻENIA

Obliczenia wykonano dla obciążenia konstrukcji nawierzchni kołem pojedynczym. Pionowa siła wywierana przez koło na nawierzchnię wynosiła 57,5 kN (dla obciążenia osi pojedynczej o wartości 115 kN). Przyjęto ciśnienie kontaktowe o wartości 850 kPa wywierane w sposób równomierny na powierzchni kołowej śladu styku opony z nawierzchnią. W każdym z obliczeniowych przypadków prędkość ruchu koła po nawierzchni wynosiła 60 km/h (16,67 m/s). Założono ruch koła po odcinku prostym drogi ze stałą prędkością, czego konsekwencją było przyjęcie zerowych sił poziomych stycznych w płaszczyźnie styku opony z nawierzchnią.

Rysunek 5.6 Obciążenie nawierzchni poruszającym się kołem. Parametry obciążenia.

5.2.2. Wyniki obliczeń w VEROAD

Obliczenia w programie komputerowym VEROAD przeprowadzono dla przemieszczeń pionowych w nawierzchni, będących sumą przemieszczeń nieodwracalnych (trwałych) oraz przemieszczeń odwracalnych. Analizie poddano wyniki dla:

- a) powierzchni warstwy ścieralnej (powierzchni konstrukcji nawierzchni),
- b) powierzchni górnej warstwy wiążącej,
- c) powierzchni górnej podbudowy asfaltowej.

Wyniki obliczeń w programie VEROAD przyjętych konstrukcji nawierzchni pokazano na rysunkach ogólnych i szczegółowych.

Rysunki 5.8-5.13 pokazują wykresy ogólne przedstawiające wartości przemieszczeń pionowych w zależności od odległości od środka obciążenia (śladu zastępczego koła na nawierzchni). Każdy z tych wykresów należy interpretować w ten sposób, że dana wartość wykresu odpowiadająca odciętej "x" pokazuje przemieszczenie na analizowanej głębokości, występujące w przekroju pionowym nawierzchni znajdującym się w miejscu punktu zerowego osi odciętych układu współrzędnych. Ilustruje to rysunek 5.7.

Rysunek 5.7. Sposób interpretacji wartości wykresów ogólnych (rysunki 5.8-5.13) dla przykładowej głębokości.

Na rysunku 5.14 pokazano przesunięcie punktu występowania maksymalnych przemieszczeń pionowych względem środka obciążenia.

Pozostałe rysunki (5.15-5.19) pokazują wykresy szczegółowe, na których zaprezentowano maksymalne wartości występujących przemieszczeń pionowych w nawierzchni i porównano je na różnych głębokościach w różnych analizowanych konstrukcjach.

Rysunek 5.8. Zależność przemieszczenia pionowego na powierzchni warstwy ścieralnej konstrukcji podstawowej dla ruchu KR4 w zależności od odległości od środka obciążenia przy różnych temperaturach powierzchni warstwy ścieralnej.

Rysunek 5.9. Zależność przemieszczenia pionowego na powierzchni warstwy ścieralnej konstrukcji porównawczej dla ruchu KR4 w zależności od odległości od środka obciążenia przy różnych temperaturach powierzchni warstwy ścieralnej.

Rysunek 5.10. Zależność przemieszczenia pionowego na powierzchni warstwy ścieralnej konstrukcji podstawowej dla ruchu KR5 w zależności od odległości od środka obciążenia przy różnych temperaturach powierzchni warstwy ścieralnej.

Rysunek 5.11. Zależność przemieszczenia pionowego na powierzchni warstwy ścieralnej konstrukcji porównawczej dla ruchu KR5 w zależności od odległości od środka obciążenia przy różnych temperaturach powierzchni warstwy ścieralnej.

Rysunek 5.12. Zależność przemieszczenia pionowego na powierzchni warstwy ścieralnej konstrukcji podstawowej dla ruchu KR6 w zależności od odległości od środka obciążenia przy różnych temperaturach powierzchni warstwy ścieralnej.

Rysunek 5.13. Zależność przemieszczenia pionowego na powierzchni warstwy ścieralnej konstrukcji porównawczej dla ruchu KR6 w zależności od odległości od środka obciążenia przy różnych temperaturach powierzchni warstwy ścieralnej.

odległość od środka obciążenia [mm]

Rysunek 5.14. Przykładowa zależność (dla konstrukcji podstawowej kategorii ruchu KR4 dla powierzchni warstwy ścieralnej) wartości sumy przemieszczenia pionowego od odległości od środka obciążenia (fragment)

Tablica	5.8.	Wartośc	i maksymalnego	przemiesz	czenia	a pionowego	с (tr	wałego i	
odwraca	Inego) dla	analizowanych	konstrukcji	W	zależności	od	warstwy	
konstruk	cyjnej	oraz tem	nperatury powierzo	chni warstwy	y ściel	ralnej			

konstr.	T _{0 max} [°C]	powierzchnia warstwy ścieralnej			powierzchnia warstwy wiążącej			powierzchnia warstwy podbudowy		
		KR4	KR5	KR6	KR4	KR5	KR6	KR4	KR5	KR6
ма	30	1,1547	0,9492	0,8894	1,1588	0,9523	0,8922	1,1697	0,9621	0,9012
	35	1,2104	0,9956	0,9338	1,2159	1,0001	0,9377	1,2296	1,0121	0,9490
OWE	40	1,2675	1,0438	0,9800	1,2754	1,0498	0,9852	1,2919	1,0649	0,9993
podsta	45	1,3275	1,0948	1,0288	1,3361	1,1020	1,0348	1,3575	1,1206	1,0526
	50	1,3896	1,1478	1,0796	1,3996	1,1558	1,0865	1,4256	1,1788	1,1081
	55	1,4518	1,2015	1,1314	1,4635	1,2109	1,1397	1,4947	1,2385	1,1655
	30	1,1140	0,8537	0,7494	1,1228	0,8591	0,7529	1,1316	0,8664	0,7586
cza	35	1,1668	0,8953	0,7852	1,1784	0,9028	0,7903	1,1893	0,9118	0,7974
law	40	1,2224	0,9397	0,8237	1,2381	0,9501	0,8308	1,2508	0,9607	0,8395
oorówn	45	1,2825	0,9878	0,8650	1,3015	1,0008	0,8743	1,3170	1,0136	0,8843
	50	1,3406	1,0352	0,9062	1,3661	1,0532	0,9196	1,3836	1,0677	0,9310
	55	1,4038	1,0875	0,9515	1,4345	1,1095	0,9678	1,4540	1,1255	0,9803

Rysunek 5.15. Porównanie zależności maksymalnej wartości sumy przemieszczenia trwałego i odwracalnego pionowego od temperatury powierzchni warstwy ścieralnej – przypadki dla konstrukcji podstawowych i porównawczych dla różnych kategoriach ruchu.

Rysunek 5.16. Porównanie zależności maksymalnej wartości sumy przemieszczenia trwałego i odwracalnego pionowego od temperatury powierzchni warstwy wiążącej – przypadki dla konstrukcji podstawowych i porównawczych przy różnych kategoriach ruchu.

Rysunek 5.17. Porównanie zależności maksymalnej wartości sumy przemieszczenia trwałego i odwracalnego pionowego od temperatury powierzchni podbudowy asfaltowej – przypadki dla konstrukcji podstawowych i porównawczych przy różnych kategoriach ruchu.

Rysunek 5.18. Porównanie zależności maksymalnej wartości sumy przemieszczenia trwałego i odwracalnego pionowego od temperatury powierzchni warstwy ścieralnej konstrukcji podstawowych – przypadki dla różnych warstw konstrukcyjnych przy różnych kategoriach ruchu.

Rysunek 5.19. Porównanie zależności maksymalnej wartości sumy przemieszczenia trwałego i odwracalnego pionowego od temperatury powierzchni warstwy ścieralnej konstrukcji porównawczych – przypadki dla różnych warstw konstrukcyjnych przy różnych kategoriach ruchu.

5.2.3. Analiza wstępnych wyników obliczeń

Największe (maksymalne) przemieszczenie pionowe, będące sumą przemieszczenia trwałego i odwracalnego, we wszystkich analizowanych konstrukcjach, zarówno na powierzchni warstwy ścieralnej, wiążącej i podbudowy asfaltowej, wypada zawsze za środkiem przyłożonego obciążenia w odległości około 10 cm od niego. Przesunięcie to wynika z opóźnienia odpowiedzi warstw asfaltowych (odkształceń) w stosunku do przyłożonego obciążenia i spowodowane jest istnieniem i rolą właściwości lepkich mieszanek mineralno-asfaltowych w wysokich temperaturach.

Przemieszczenia pionowe w warstwach asfaltowych są największe w granicy śladu zastępczego. Wszystkie przeprowadzone obliczenia wskazują w tym rejonie na wzrost tych przemieszczeń wraz z rosnącą temperaturą warstw. Spowodowane jest to zmianą (obniżeniem) parametrów reologicznych mieszanek mineralno-asfaltowych w wyniku rosnącej temperatury.

Analizy wyników dla konstrukcji podstawowych i porównawczych wykazały, że przemieszczenia pionowe, zarówno dla jednych jak i drugich, są tym mniejsze, im większa jest sumaryczna grubość pakietu warstw asfaltowych (w obrębie tych samych rodzajów konstrukcji – podstawowych albo porównawczych). Korzystniejsze jest dlatego stosowanie (w obrębie tej samej konstrukcji, z tych samych materiałów) większych grubości warstw asfaltowych dla obniżenia przemieszczeń pionowych nawierzchni.

Porównanie przeprowadzone na podstawie obliczeń przemieszczeń pionowych na tych samych głębokościach w nawierzchni przy konstrukcjach stosowanych do tej samej kategorii ruchu wskazuje, że większe przemieszczenia powstaną w konstrukcjach podstawowych (z warstwami wiążącymi i podbudowami asfaltowymi wykonanymi z AC WMS) niż w analizowanych konstrukcjach porównawczych (z warstwami wiążącymi oraz podbudowami asfaltowymi wykonanymi z klasycznego AC). Różnica przemieszczeń na tej samej głębokości w odpowiadających sobie konstrukcjach - podstawowej i porównawczej wypada na niekorzyść AC WMS tym bardziej im grubszy jest pakiet zastosowanych warstw asfaltowych (im wyższa kategoria ruchu). Należy zauważyć jednak, że grubości sumaryczne wszystkich warstw asfaltowych w obu typach są różne (w konstrukcjach podstawowych są wieksze, w porównawczych mniejsze – zgodnie z ideą wprowadzenia betonu asfaltowego o wysokim module sztywności). Grubość warstw asfaltowych obok ich parametrów jest znaczącym czynnikiem mającym wpływ na powstawanie trwałych deformacji w nawierzchni, któremu należy poświęcić uwagę w kolejnych obliczeniach i przyjrzeć się bliżej w analizach porównawczych.

5.3. Literatura

[5.1] Denneman E.: The application of locally developed pavement temperature prediction algorithms in performance grade (PG) binder selection. Materiały konferencyjne: Southern African Transport Conference (SATC 2007)

[5.2] Informacje, instrukcje. Zasady wykonywania nawierzchni asfaltowej o zwiększonej odporności na koleinowanie i zmęczenie (ZW-WMS 2007), Seria II, Zeszyt 70., IBDiM, Warszawa 2007

[5.3] Katalog typowych konstrukcji nawierzchni podatnych i półsztywnych, IBDiM, GDDKiA, Warszawa, 1997

[5.4] VEROAD: "*User manual*", Version 2000 April. Appendix B: "Additional Theory", NPC bv, Utrecht, Netherlands 2000

[5.5] E. J. Yoder, Witczak M. W., *Principles of Pavement Design*, 2nd Edition, John Wiley & Son Inc., New York 1975

6. Analiza wpływu położenia warstwy o wysokim module sztywności w konstrukcji nawierzchni

Przeprowadzona analiza wpływu położenia warstwy o wysokim module sztywności w konstrukcji nawierzchni ma charakter wstępny i w kolejnym III etapie pracy badawczej zostanie uszczegółowiona.

6.1. Rozkładu temperatury w nawierzchni

Temperatura nawierzchni drogowej zależna jest od zmiennej temperatury powietrza oraz od promieniowania słonecznego. Temperatura w nawierzchni może być analizowana w okresach krótkotrwałych (np. dobowych) lub długotrwałych (np. dla różnych sezonów klimatycznych). Największe uszkodzenia warstw asfaltowych nawierzchni powodują nagłe, dobowe zmiany temperatury związane z gwałtownymi ochłodzeniami do temperatur poniżej -20° C.

Ehrola w pracy [6.3] badał zmiany temperatury warstw nawierzchni na różnej głębokości. Badania były prowadzone w ciągu całego roku na terenie Finlandii, a więc w klimacie charakteryzującym się relatywnie niską temperaturą.

Na podstawie przeprowadzonych badań na terenie północnej Finlandii stwierdził on, że:

- temperatura konstrukcji nawierzchni najlepiej korelowała ze zmianami temperatury powietrza, a korelacja ta zmniejszała się wraz ze wzrostem grubości nawierzchni asfaltowej (polegało to na zmniejszaniu się szybkości zmian temperatury nawierzchni przy ochładzaniu w warstwach leżących głębiej),
- różnice temperatur poszczególnych warstw stawały się mniejsze wraz ze wzrostem głębokości ułożenia tych warstw w stosunku do powierzchni drogi,
- zmiany temperatury w nawierzchni przy wzrastającej temperaturze powietrza następowały szybciej niż przy jej obniżaniu się.

Kallas [6.4] w badaniach nad temperaturą nawierzchni przeprowadził pomiary temperatury na dwóch odcinkach doświadczalnych położonych w stanie Maryland w Stanach Zjednoczonych. Pomiary były wykonywane w okresie 1 roku. Zmiany temperatury na grubości warstwy z betonu asfaltowego zarejestrowane w czasie badań okresu zimy i lata pokazano na rysunkach 6.1 i 6.2.

112

Rysunek 6.2. Rozkład temperatury na głębokości warstw betonu asfaltowego w okresie letnim, [6.4]

Dodatkowo na rysunku 6.3 pokazano rozkład temperatury na grubości warstwy z betonu asfaltowego dla dwóch najzimniejszych miesięcy w okresie pomiaru – dla miesięcy grudnia i stycznia.

Rysunek 6.3. Rozkład temperatury na głębokości warstw betonu asfaltowego w miesiącach zimowych dla temperatur średnich i minimalnych, [6.4]

Średnia temperatura nie wykazuje znacznych różnic wraz z głębokością pomiaru. Jednak pomierzone temperatury minimalne spowodowały znaczne zróżnicowanie temperatur wraz z głębokością pomiaru dochodzące do 10°C na grubości warstwy. Boutin i Lupien [6.2] w badaniach nad spękaniami termicznymi nawierzchni asfaltowych na terytorium Kanady porównywali minimalną temperaturę nawierzchni i powietrza w zależności od głębokości pomiaru. Na podstawie przeprowadzonych doświadczeń opracowali oni model empiryczny rozkładu temperatury w zależności od głębokości warstw bitumicznych. Model ten wygląda następująco:

$$T_z = -0.3794 + 0.7193^* T_{pow} + 0.0411^* z$$
(6.1)

gdzie:

 T_z – temperatura warstw bitumicznych na głębokości "z" wyrażona w [⁰C],

T_{pow} – minimalna temperatura powietrza od listopada do lutego mierzona w okresie kilku lat w danym rejonie badań, w [⁰C],

z – głębokość na jakiej mierzono temperaturę w nawierzchni [mm].

Przykładowe wyniki sprawdzające opracowany model matematyczny zaprezentowali autorzy w tablicy 6.1.

Tablica 6.1. Różnica pomiędzy pomierzonymi, a obliczonymi wartościami temperatury w nawierzchni asfaltowej przy minimalnej temperaturze powietrza pomierzonej w okresie od listopada do lutego w danym rejonie, równej –41°C, [6.2]

Głębokość pomiaru	Mierzona temperatura w warstwie asfaltowej nawierzchni	Obliczona temperatura w warstwie asfaltowej nawierzchni	Zakres błędu
[mm]	[⁰ C]	[⁰ C]	[⁰ C]
0	-32,0	-29,9	+2,1
50	-29,0	-27,8	+1,2
100	-24,0	-25,8	-1,8

Zaproponowany przez Boutin'a i Lupien'a [6.2] model rozkładu temperatury w warstwach bitumicznych porównano z wynikami pomiarów przeprowadzonych przez Kallas'a [6.4] przyjmując jako minimalną pomierzoną temperaturę powietrza temperaturę w styczniu: -16,7°C. Wyniki porównania przedstawiono na rysunku 6.4.

Rysunek 6.4. Porównanie rozkładu temperatury w warstwach bitumicznych według modelu opracowanego przez Boutin'a i Lupiena [6.2] z wynikami pomiarów przeprowadzonych przez Kallas'a [6.4]; według autora

Przedstawione na rysunku 6.4 porównanie opracowanego modelu z wielkościami rzeczywistych pomiarów uzyskanych dla minimalnej temperatury powietrza w miesiącu styczniu potwierdziło założenia modelu do głębokości warstwy bitumicznej równej 15 cm.

Badania nad temperaturą nawierzchni w różnych okresach roku prowadzone były również przez Instytut Asfaltowy [6.1]. Wynikiem tych prac było opracowanie wzoru pozwalającego na określenie temperatury nawierzchni na różnej jej głębokości. Wzór ten ma następującą postać:

$$MMPT = MMAT * \left(1 + \frac{1}{z+4}\right) - \left(\frac{34}{z+4}\right) + 6$$
(6.2)

gdzie:

•	
Z	 głębokość poniżej powierzchni nawierzchni w calach,
MMPT	 średnia miesięczna temperatura nawierzchni w [⁰F],
MMAT	- średnia miesięczna temperatura powietrza w [⁰ F].

Jako głębokość reprezentatywną należy przyjmować 1/3 grubości warstw asfaltowych.

W latach 70-tych w USA, w ramach programu SHRP (Strategiczny Program Badań Drogowych, ang. Strategic Highway Research Program) prowadzono intensywne prace nad tworzeniem modeli do obliczania temperatury nawierzchni w oparciu o dane meteorologiczne. Przewidywanie ekstremalnych temperatur w warstwach asfaltowych konstrukcji nawierzchni stało się elementem nowoczesnej metody projektowania nawierzchni zwanej Superpave. Everitt (1999) dokonał pierwszych prób kalibracji algorytmów Superpave do użycia w Południowej Afryce, przy

wykorzystaniu danych z miast Durban, Newcastle i Pretoria. Viljoen (2001) w oparciu o dane ze studiów Everitt'a i kilku innych lokalnych studiów opracował wzory do przewidywania temperatury nawierzchni asfaltowych w RPA. Wzory Viljoen'a stały się bazowym algorytmem dla nowego oprogramowania do szacowania temperatury nawierzchni o nazwie CSIR ThermalPADS.

Modele maksymalnej temperatury nawierzchni Viljoen'a i Superpave mają stosunkowo prostą formę, bazują na koncepcji bilansu energii.

$$T_{s(\max)} = T_{air(\max)} + 24.5 \cdot (\cos Z_n)^2 \cdot C$$
(6.3)

gdzie:

 $T_{s(max)}$ - maksymalna jednodniowa temperatura nawierzchni, [°C] $T_{air(max)}$ maksymalna jednodniowa temperatura nawierzchni, [°C]

- maksymalna jednodniowa temperatura powietrza, [°C]

 Z_n

- kąt zenitalny w południe jest funkcją deklinacji słonecznej

$$\cos Z_n = \sin(\varphi)\sin(\delta) + \cos(\varphi)\cos(\delta)$$
(6.4)

- $^{\varphi}$ szerokość geograficzna
- δ deklinacja słoneczna

$$\delta = -23,45 \cdot \cos\left[\frac{360}{365} \cdot (N+10)\right]$$
(6.5)

N – dzień roku (1 dla pierwszego stycznia)

С

- indeks zachmurzenia

C - 1,1 gdy $T_{air(max)}$ >30 °C

C - 1,0 gdy średnia miesięczna temperatura powietrza $< T_{air(max)} < 30$ °C

C - 0,25 gdy $T_{air(max)}$ < średnia miesięczna temperatura powietrza

Wzór na maksymalną temperaturę nawierzchni proponowany przez Superpave ma postać:

$$T_{s(\text{max})} = T_{air(\text{max})} - 0,00618 \cdot \varphi^2 + 0,2289 \cdot \varphi + 24,4$$
(6.6)

gdzie:

 $T_{s(max)}$ - maksymalna jednodniowa temperatura nawierzchni, [°C]

 $T_{air(max)}$ - maksymalna jednodniowa temperatura powietrza, [°C]

φ - szerokość geograficzna

Różnica między wzorem Viljoen'a (6.3) i Superpave (6.6) polega na użyciu wpływu kąta zenitalnego zamiast wyłącznie szerokości geograficznej. Model Superpave jest przydatny wyłącznie dla pozycji słońca w letni, bezchmurny dzień, natomiast wtrącenie kąta zenitalnego pozwala uwzględnić sezonowość co czyni wzór Viljoen'a bardziej dokładnym.

Modele minimalnej temperatury nawierzchni są jeszcze mniej skomplikowane. Polegają na znalezieniu algorytmu pozwalającego na jak najdokładniejsze uzależnienie minimalnej temperatury nawierzchni z minimalną temperaturą otoczenia. Algorytm Viljoen'a przedstawia wzór 6.7, zaś jego zalecaną modyfikację Superpave wzór 6.8:

$$T_{s(\min)} = 0.89T_{air(\min)} + 5.2$$
(6.7)

$$T_{s(\min)} = 0.859T_{air(\min)} + 1.7$$
(6.8)

gdzie:

 $T_{s(\min)}$ - minimalna jednodniowa temperatura nawierzchni, [°C]

 $T_{air(min)}$ - minimalna jednodniowa temperatura powietrza, [°C]

W dalszej pracy Viljoen skupił się nad znalezieniem wzoru pozwalającego określić wartości ekstremalnych temperatur na różnych głębokościach w konstrukcji nawierzchni. Wynikiem tych prac są wzory do wyznaczania maksymalnej (wzór 6.9) i minimalnej (wzór 6.10) temperatury nawierzchni na określonej głębokości.

$$T_{d(\max)} = T_{s(\max)} (1 - 4,237 \cdot 10^{-3} d + 2,95 \cdot 10^{-5} d^2 - 8,53 \cdot 10^{-8} d^3)$$
(6.9)

gdzie:

 $T_{d(\max)}$ - maksymalna jednodniowa temperatura nawierzchni na głębokości d, [°C] $T_{s(\max)}$ - maksymalna jednodniowa temperatura nawierzchni z wzoru 6.3, [°C]

d - głębokość, [mm]

$$T_{d(\min)} = T_{s(\min)} + 3.7 \cdot 10^{-2} d - 6.29 \cdot 10^{-5} d^{2}$$
(6.10)

gdzie:

 $T_{d(\min)}$ - minimalna jednodniowa temperatura nawierzchni na głębokości d, [°C]

 $T_{s(\min)}$ - minimalna jednodniowa temperatura nawierzchni z wzoru 6.9, [°C] d - głębokość, [mm]

Wzory Superpave do wyznaczania maksymalnej (6.11) i minimalnej (6.12) temperatury nawierzchni na głębokości wyglądają jak poniżej:

$$T_{d(\max)} = (T_{s(\max)} + 17,8)(1 - 2,48 \cdot 10^{-3}d + 1,085 \cdot 10^{-5}d^2 - 2,441 \cdot 10^{-8}d^3) - 17,8$$
(6.11)

gdzie:

 $T_{d(max)}$ - maksymalna jednodniowa temperatura nawierzchni na głębokości d, [°C] $T_{s(max)}$ - maksymalna jednodniowa temperatura nawierzchni z wzoru 6.8, [°C] d - głębokość, [mm]

$$T_{d(\min)} = T_{s(\min)} + 5.1 \cdot 10^{-2} d - 6.3 \cdot 10^{-5} d^2$$
(6.12)

gdzie:

 $T_{d(\min)}$ - minimalna jednodniowa temperatura nawierzchni na głębokości d, [°C]

- $T_{s(\min)}$ minimalna jednodniowa temperatura nawierzchni z wzoru 6.8, [°C]
- *d* głębokość, [mm]

Dopełnieniem tych wszystkich wzorów jest algorytm pozwalający wyznaczyć temperaturę nawierzchni na określonej głębokości o każdej porze dnia i ma następującą postać:

$$T_{d(t)} = T_{d(\min)} + [T_{d(\max)} - T_{d(\min)}] \sin \left[\pi \frac{(t - t_r - \beta)}{DL + 2(\alpha - \beta)} \right]$$
(6.13)

gdzie:

DL - długość dobowa, wyznaczana z wzoru:

$$DL = \frac{2}{15} \cdot \cos^{-1}[-\tan(\varphi) \cdot \tan(\delta)]$$
(6.14)

 $^{\varphi}$ - szerokość geograficzna

- δ deklinacja słoneczna, wyznaczona z wzoru 6.5
- t godzin dla której prowadzimy obliczenia
- d głębokość, [mm]

 $T_{d(t)}$ - temperatura warstwy asfaltowej na głębokości d, o godzinie t, [°C]

 $T_{d(\min)}$ - minimalna temperatura nawierzchni na głębokości d, [°C], wzór 6.10

- $T_{d(\max)}$ maksymalna temperatura nawierzchni na głębokości d, [°C], wzór 6.9
- t_r czas wschodu słońca
- α opóźnienie czasowe między 12 w południe, a czasem wystąpienia maksymalnej temperatury nawierzchni, w przybliżeniu:

$$\alpha = 2 + \frac{d}{50} \tag{6.15}$$

β - opóźnienie czasowe między wschodem słońca, a wystąpieniem minimalnej temperatury nawierzchni, najlepsze dopasowanie to 1,5 h

Wzór pozwalający wyznaczyć temperaturę nawierzchni na określonej głębokości o każdej porze nocy (po zachodzie słońca) ma postać jak poniżej:

$$T_{d(t)} = T_{d(\min)}^{n} + [T_{d(ts)} - T_{d(\min)}^{n}] \exp\left[\frac{\gamma(t - t_{s})}{24 - DL + \beta}\right]$$
(6.16)

gdzie:

^ts - czas zachodu słońca

- $T_{d(\min)}^{n}$ minimalna temperatura nawierzchni na głębokości d, następnego dnia [°C], wyznaczona z wzoru 6.12
- $T_{d(ts)}$ temperatura nawierzchni na głębokości d o zachodzie słońca, [°C], wyznaczona z wzoru 6.13
- ^γ parametr rozkładu, przyjęto jego wartość jako 3,9
- DL długość dobowa, wyznaczana z wzoru 6.14

Wraz z powyższymi wzorami model przewidywania temperatury nawierzchni można uznać za kompletny. Umożliwia wykonanie dobowego profilu temperatury warstw asfaltowych w zależności od głębokości, co pokazuje rysunek 6.5:

Rysunek 6.5 Dobowy profil temperaturowy dla najcieplejszego zanotowanego dnia (24.12.2006) w Bloemfontein (RPA), wykonany za pomocą CSIR ThermalPADS.

Jak wspomniano na początku rozdziału, Viljoen opracował swój model w oparciu o dane z wcześniejszych analiz temperatur nawierzchni w Południowej Afryce. Aby zweryfikować rzetelność wyników modelu, wykonane zostały dodatkowe badania. Odczyty temperatur nawierzchni zebrane zostały z sekcji LTPP (program badania długoterminowych właściwości nawierzchni, ang: Long Term Pavement Performance) zlokalizowanych w Gauteng i Western Cape (prowincje w RPA). Tablice 6.2 i 6.3 przedstawiają ocenę poprawności wyników modelu Viljoen'a dla sekcji LTPP.

Tablica	6.2 Dokładno	ość przewidywania	maksymalnej	temperatury	nawierzchni	przez
modele	Viljoen i Supe	erpave				-

	Liczba	moo	del Viljoen	model Superpave		
Lokalizacja	dni	średni błąd	odchylenie stand.	średni błąd	odchylenie stand.	
	pomiarowych	[°C]	błędu [°C]	[°C]	błędu [°C]	
Cullinam (R238)	93	1,72	2,59	-4,32	-3,29	
Vereniging	92	0,31	2,48	-2,03	2,83	

(P234/1)					
Cape Town (N7)	332	-3,40	2,92	1,82	6,66
Lamberts Bay (R365)	320	-2,05	3,68	3,46	7,11

Tablica 6.3 Dokładność przewidywania minimalnej temperatury nawierzchni przez modele Viljoen i Superpave

	Liczba	moo	del Viljoen	model Superpave		
LOKAIIZACJA	dni	średni błąd	odchylenie stand.	średni błąd	odchylenie stand.	
	pomiarowych	[°C]	błędu [°C]	[°C]	błędu [ºC]	
Cullinam (R238)	93	-2,73	2,23	2,67	2,13	
Vereniging (P234/1)	92	1,01	2,44	5,39	2,20	
Cape Town (N7)	332	-2,80	2,85	3,23	2,28	
Lamberts Bay (R365)	320	0,19	3,17	6,17	3,37	

Biorąc po uwagę fakt, iż oba modele nie uwzględniają w obliczeniach zachmurzenia, prędkości wiatru i wilgotności powietrza, zarówno wzory Viljoen'a i Superpave dają zaskakująco dokładne wyniki. Rysunki 6.6 i 6.7 pokazują rozrzut błędu obliczeniowego dla modelu Viljoen i Superpave w zależności od temperatury.

Rysunek 6.6 Odchylenie wyników modelu maksymalnej temperatury nawierzchni Viljoen i Superpave.

Na rysunku 6.6 widać, że w przypadku przewidywania maksymalnej temperatury nawierzchni błędy wyników modelu Viljoen są stałe w całym zakresie temperatur i oscylują głównie między -5°C do 5°C. Tymczasem model Superpave wykazuje trend do zaniżania wyników temperatury nawierzchni w przedziale niskich temperatur powietrza i zawyżania dla wysokich temperatur otoczenia.

Rysunek 6.7 Odchylenie wyników modelu minimalnej temperatury nawierzchni Viljoen i Superpave.

Model przewidywania minimalnej temperatury nawierzchni Viljoen'a jest dokładniejszy w całym zakresie rozpatrywanych temperatur. Model Superpave zawyża wyniki coraz bardziej, wraz ze wzrostem temperatury. Według Denneman'a, autora opracowania, model Viljoen'a daje wyniki o dopuszczalnej dokładności i może być z powodzeniem wykorzystywany przy projektowaniu nawierzchni podatnych.

6.2. Wstępne analizy wpływy położenia warstwy o wysokim module sztywności w konstrukcji nawierzchni w programie VEROAD

6.2.1. Dane do obliczeń

PRZYJĘTE KONSTRUKCJE NAWIERZCHNI

Obliczenia wstępne przeprowadzono dla konstrukcji nawierzchni do kategorii ruchu KR4-KR6. Analizie wyników obliczeń poddano:

- konstrukcje nawierzchni typu A z warstwą ścieralną wykonaną z mastyksu grysowego (SMA), warstwą wiążącą z betonu asfaltowego o wysokim module sztywności (AC WMS), podbudową asfaltową wykonaną z klasycznego betonu asfaltowego (AC), podbudową z kruszywa łamanego stabilizowanego mechanicznie (KŁSM), wg [6.5];
- konstrukcje nawierzchni typu B z warstwą ścieralną wykonaną z mastyksu grysowego (SMA), warstwą wiążącą z klasycznego betonu asfaltowego (AC), podbudową asfaltową wykonaną z betonu asfaltowego o wysokim module sztywności (AC WMS), podbudową z kruszywa łamanego stabilizowanego mechanicznie (KŁSM), wg [6.5].

Rys. 6.8. Konstrukcje poddane analizie w programie VEROAD z wykorzystaniem betonu asfaltowego AC i AC WMS dla KR4-KR6.

MATERIAŁY DO WARSTW ASFALTOWYCH

Do warstw asfaltowych we wstępnych obliczeniach zastosowano SMA do warstw ścieralnych oraz klasyczny beton asfaltowy (AC) i beton asfaltowy o wysokim module sztywności (AC WMS) do warstw wiążących i podbudów asfaltowych, zgodnie z poniższą tabelą:

Tablica 6.2. Materiały poszczególnych warstw asfaltowych konstrukcji nawierzchni typów A i B wykorzystane do obliczeń.									
Warstwa asfaltowa Typ konstrukcji									
konstrukcji nawierzchni	A	В							
ścieralna	SMA 11 50/70	SMA 11 50/70							
wiążąca	AC WMS 16 W 20/30 (mieszanka A)	AC 16 W 35/50 (mieszanka D)							
podbudowa asfaltowa	AC 22P 35/50 (mieszanka E)	AC WMS 16 P 20/30 (mieszanka A)							

ROZKŁAD TEMPERATURY W WARSTWACH ASFALTOWYCH

Obliczenia wykonano dla parametrów warstw asfaltowych zależnych od temperatury reprezentatywnej warstw asfaltowych, która wyznaczana jest jako średnia temperatura (w środku grubości) warstwy.

Rozkład temperatur warstw asfaltowych oszacowano za pomocą wzoru Vilijoena (5.1). Założono 6 poziomów obliczeń – dla temperatury powierzchni warstwy ścieralnej od 30°C do 55°C z gradacją co 5°C. Rozkład temperatury na głębokości warstw asfaltowych pokazano w rozdziale 5 na rysunku 5.4.

Temperatury reprezentatywne dla poszczególnych warstw asfaltowych w konstrukcjach nawierzchni poddanych obliczeniom i analizie zebrano w tablicy 5.1 w rozdziale 5.

PARAMETRY WARSTW ASFALTOWYCH

Do obliczeń przyjęto dwa modele materiałowe dla warstw asfaltowych:

- model sprężystości Hooke'a (do warstw ścieralnych) oraz
- model lepkosprężystości Burgersa (do warstw wiążących i podbudów asfaltowych).

Wszystkie parametry obu modeli (w tym współczynnik Poissona) uzależniono od temperatur reprezentatywnych warstw asfaltowych, wzorem punktu 5.2.1. Wartości parametrów dla poszczególnych warstw asfaltowych dla konstrukcji typu A i B oraz kategorii ruchu KR4-KR6 przy różnych temperaturach warstwy ścieralnej $T_{0,max}$ zebrano w tablicach 6.4-6.9.

_		Rodzai	•		•)•	Parametry	y warstw		
T _{0,max} 30°C	Kat. ruchu	warstw y	Materiał warstwy	<i>E</i> ₁ [MPa]	<i>Е</i> ₂ [MPa]	η₁ [Mpa.s]	η ₂ [Mpa.s]	S [Mpa]	v [-]
		Ś	SMA 11 50/70	-	-	-	-	3 363	0,42
	KR4	W	(A) AC WMS 16 W 20/30	20 036	5 682	5 019	1 339	-	0,41
cje we		Р	(E) AC 22P 35/50	24 101	7 741	6 494	1 921	-	0,39
vov		Ś	SMA 11 50/70	-	-	-	-	3 363	0,42
stru	KR5	W	(A) AC WMS 16 W 20/30	20 036	5 682	5 019	1 339	-	0,41
kons pods		Р	(E) AC 22P 35/50	25 464	8 824	7 098	2 199	-	0,38
	KR6	Ś	SMA 11 50/70	-	-	-	-	3 363	0,42
		W	(A) AC WMS 16 W 20/30	20 036	5 682	5 019	1 339	-	0,41
		Р	(E) AC 22P 35/50	27 412	10 574	7 999	2 650	-	0,37
		Ś	SMA 11 50/70	-	-	-	-	3 363	0,42
	KR4	W	(D) AC 16 W 35/50	14 881	3 813	3 606	928	-	0,41
je		Р	(A) AC WMS 16 P 20/30	22 614	7 176	8 161	1 711	-	0,39
kc.		Ś	SMA 11 50/70	-	-	-	-	3 363	0,42
stru vna	KR5	W	(D) AC 16 W 35/50	14 881	3 813	3 606	928	-	0,41
ons róv		Р	(A) AC WMS 16 P 20/30	23 845	7 981	10 429	1 914	-	0,38
х од		Ś	SMA 11 50/70	-	-	-	-	3 363	0,42
	KR6	W	(D) AC 16 W 35/50	14 881	3 813	3 606	928	-	0,41
konstrukcje konstrukcje porównawcze podstawowe		Р	(A) AC WMS 16 P 20/30	25 602	9 245	15 077	2 234	-	0,37

Tablica 6.4. Parametry materiałowe warstw asfaltowych konstrukcji nawierzchni dla $T_{0.max} = 30^{\circ}$ C.

Tablica 6.5. Parametry materiałowe warstw asfaltowych konstrukcji nawierzchni dla $T_{0,max} = 35^{\circ}$ C.

_		Rodzai				Parametry	y warstw		
I _{0,max} 35°C	Kat. ruchu	warstw y	Materiał warstwy	<i>E</i> ₁ [MPa]	<i>Е</i> ₂ [MPa]	η₁ [Mpa.s]	η₂ [Mpa.s]	S [Mpa]	v [-]
		Ś	SMA 11 50/70	-	-	-	-	2 703	0,44
	KR4	W	(A) AC WMS 16 W 20/30	16 869	4 166	2 869	966	-	0,43
ie ve		Р	(E) AC 22P 35/50	20 803	5 543	5 120	1 361	-	0,41
konstrukcj podstawow	KR5	Ś	SMA 11 50/70	-	-	-	-	2 703	0,44
		W	(A) AC WMS 16 W 20/30	16 869	4 166	2 869	966	-	0,43
		Р	(E) AC 22P 35/50	22 280	6 458	5 719	1 594	-	0,40
	KR6	Ś	SMA 11 50/70	-	-	-	-	2 703	0,44
		W	(A) AC WMS 16 W 20/30	16 869	4 166	2 869	966	-	0,43
		Р	(E) AC 22P 35/50	24 409	7 976	6 628	1 981	-	0,39
		Ś	SMA 11 50/70	-	-	-	-	2 703	0,44
	KR4	W	(D) AC 16 W 35/50	12 360	2 603	2 631	629	-	0,43
je ize		Р	(A) AC WMS 16 P 20/30	19 633	5 470	4 665	1 287	-	0,41
ikc.		Ś	SMA 11 50/70	-	-	-	-	2 703	0,44
stru vna	KR5	W	(D) AC 16 W 35/50	12 360	2 603	2 631	629	-	0,43
ons róv		Р	(A) AC WMS 16 P 20/30	20 969	6 193	5 962	1 466	-	0,40
k, po		Ś	SMA 11 50/70	-	-	-	-	2 703	0,44
	KR6	W	(D) AC 16 W 35/50	12 360	2 603	2 631	629	-	0,43
konstrukcje porównawcze podstawowe		Р	(A) AC WMS 16 P 20/30	22 892	7 352	8 619	1 756	-	0,39

		Dodaoi			• 0,max	Parametry	y warstw		
T _{0,max} 40°C	Kat. ruchu	warstw y	Materiał warstwy	<i>E</i> ₁ [MPa]	<i>Е</i> ₂ [MPa]	η ₁ [Mpa.s]	η ₂ [Mpa.s]	S [Mpa]	v [-]
		Ś	SMA 11 50/70	-	-	-	-	2 172	0,46
	KR4	W	(A) AC WMS 16 W 20/30	14 000	3 055	1 767	697	-	0,44
je Ve		Р	(E) AC 22P 35/50	17 759	3 970	3 972	965	-	0,43
§ k		Ś	SMA 11 50/70	-	-	-	-	2 172	0,46
stru tav	KR5	W	(A) AC WMS 16 W 20/30	14 000	3 055	1 767	697	-	0,44
suc		Р	(E) AC 22P 35/50	19 319	4 727	4 546	1 155	-	0,42
bo bo	KR6	Ś	SMA 11 50/70	-	-	-	-	2 172	0,46
		W	(A) AC WMS 16 W 20/30	14 000	3 055	1 767	697	-	0,44
		Р	(E) AC 22P 35/50	21 588	6 016	5 435	1 481	-	0,40
		Ś	SMA 11 50/70	-	-	-	-	2 172	0,46
	KR4	W	(D) AC 16 W 35/50	10 089	1 777	1 854	426	-	0,44
je		Р	(A) AC WMS 16 P 20/30	16 880	4 171	2 874	967	-	0,43
[kc]		Ś	SMA 11 50/70	-	-	-	-	2 172	0,46
stru vna	KR5	W	(D) AC 16 W 35/50	10 089	1 777	1 854	426	-	0,44
ons róv		Р	(A) AC WMS 16 P 20/30	18 291	4 806	3 673	1 123	-	0,42
хоd		Ś	SMA 11 50/70	-	-	-	-	2 172	0,46
	KR6	W	(D) AC 16 W 35/50	10 089	1 777	1 854	426	-	0,44
konstrukcje konstrukcje porównawcze podstawowe		Р	(A) AC WMS 16 P 20/30	20 343	5 847	5 309	1 380	-	0,40

Tablica 6.6. Parametry materiałowe warstw asfaltowych konstrukcji nawierzchni dla $T_{0,max} = 40^{\circ}$ C.

Tablica 6.7. Parametry materiałowe warstw asfaltowych konstrukcji nawierzchni dla $T_{0,max} = 45^{\circ}$ C.

_		Rodzai				Parametry	y warstw		
T _{0,max} 45°C	Kat. ruchu	warstw y	Materiał warstwy	<i>E</i> ₁ [MPa]	<i>E</i> ₂ [MPa]	η₁ [Mpa.s]	η₂ [Mpa.s]	S [Mpa]	v [-]
		Ś	SMA 11 50/70	-	-	-	-	1 745	0,47
konstrukcje konstrukcje 5 L porównawcze podstawowe 3 xe ^{wú} 0 L	KR4	W	(A) AC WMS 16 W 20/30	11 426	2 240	1 153	503	-	0,46
		Р	(E) AC 22P 35/50	14 970	2 843	3 027	684	-	0,44
	KR5	Ś	SMA 11 50/70	-	-	-	-	1 745	0,47
		W	(A) AC WMS 16 W 20/30	11 426	2 240	1 153	503	-	0,46
		Р	(E) AC 22P 35/50	16 580	3 460	3 559	837	-	0,43
	KR6	Ś	SMA 11 50/70	-	-	-	-	1 745	0,47
		W	(A) AC WMS 16 W 20/30	11 426	2 240	1 153	503	-	0,46
		Р	(E) AC 22P 35/50	18 949	4 538	4 407	1 108	-	0,42
		Ś	SMA 11 50/70	-	-	-	-	1 745	0,47
	KR4	W	(D) AC 16 W 35/50	8 068	1 213	1 254	288	-	0,46
je ze		Р	(A) AC WMS 16 P 20/30	14 353	3 180	1 874	727	-	0,44
No.		Ś	SMA 11 50/70	-	-	-	-	1 745	0,47
stru vna	KR5	W	(D) AC 16 W 35/50	8 068	1 213	1 254	288	-	0,46
ons róv		Р	(A) AC WMS 16 P 20/30	15 812	3 730	2 395	860	-	0,43
kc po∣		Ś	SMA 11 50/70	-	-	-	-	1 745	0,47
	KR6	W	(D) AC 16 W 35/50	8 068	1 213	1 254	288	-	0,46
		Р	(A) AC WMS 16 P 20/30	17 956	4 650	3 463	1 085	-	0,42

_		Rodzai			Gjinidat	Parametry	y warstw		
T _{0,max} 50°C	Kat. ruchu	warstw y	Materiał warstwy	<i>E</i> ₁ [MPa]	<i>Е</i> ₂ [MPa]	η₁ [Mpa.s]	η ₂ [Mpa.s]	S [Mpa]	v [-]
		Ś	SMA 11 50/70	-	-	-	-	1 402	0,49
	KR4	W	(A) AC WMS 16 W 20/30	9 150	1 643	787	363	-	0,47
kcje /owe		Р	(E) AC 22P 35/50	12 437	2 036	2 263	485	-	0,45
		Ś	SMA 11 50/70	-	-	-	-	1 402	0,49
stru	KR5	W	(A) AC WMS 16 W 20/30	9 150	1 643	787	363	-	0,47
kons pods		Р	(E) AC 22P 35/50	14 064	2 532	2 743	607	-	0,45
	KR6	Ś	SMA 11 50/70	-	-	-	-	1 402	0,49
		W	(A) AC WMS 16 W 20/30	9 150	1 643	787	363	-	0,47
		Р	(E) AC 22P 35/50	16 491	3 423	3 529	828	-	0,43
		Ś	SMA 11 50/70	-	-	-	-	1 402	0,49
	KR4	W	(D) AC 16 W 35/50	6 297	828	808	195	-	0,47
je		Р	(A) AC WMS 16 P 20/30	12 052	2 424	1 279	547	-	0,45
kc.		Ś	SMA 11 50/70	-	-	-	-	1 402	0,49
stru vna	KR5	W	(D) AC 16 W 35/50	6 297	828	808	195	-	0,47
ons róv		Р	(A) AC WMS 16 P 20/30	13 530	2 894	1 634	659	-	0,45
х од		Ś	SMA 11 50/70	-	-	-	-	1 402	0,49
	KR6	W	(D) AC 16 W 35/50	6 297	828	808	195	-	0,47
konstrukcje konstrukcje porównawcze podstawowe		Ρ	(A) AC WMS 16 P 20/30	15 731	3 698	2 363	852	-	0,43

Tablica 6.8. Parametry materiałowe warstw asfaltowych konstrukcji nawierzchni dla $T_{0,max} = 50^{\circ}$ C.

Tablica 6.9. Parametry materiałowe warstw asfaltowych konstrukcji nawierzchni dla $T_{0,max} = 55^{\circ}$ C.

T _{0,max}		Rodzai				Parametry	y warstw		
I _{0,max} 55°C	Kat. ruchu	warstw y	Materiał warstwy	<i>E</i> ₁ [MPa]	<i>Е</i> ₂ [MPa]	η₁ [Mpa.s]	η₂ [Mpa.s]	S [Mpa]	v [-]
		Ś	SMA 11 50/70	-	-	-	-	1 127	0,50
	KR4	W	(A) AC WMS 16 W 20/30	7 169	1 205	557	262	-	0,48
e je		Р	(E) AC 22P 35/50	10 157	1 458	1 660	343	-	0,47
vov		Ś	SMA 11 50/70	-	-	-	-	1 127	0,50
stru	KR5	W	(A) AC WMS 16 W 20/30	7 169	1 205	557	262	-	0,48
spo		Р	(E) AC 22P 35/50	11 770	1 853	2 078	440	-	0,46
ъ х ро		Ś	SMA 11 50/70	-	-	-	-	1 127	0,50
	KR6	W	(A) AC WMS 16 W 20/30	7 169	1 205	557	262	-	0,48
		Р	(E) AC 22P 35/50	14 215	2 582	2 789	619	-	0,45
		Ś	SMA 11 50/70	-	-	-	-	1 127	0,50
	KR4	W	(D) AC 16 W 35/50	4 776	565	494	132	-	0,48
je		Р	(A) AC WMS 16 P 20/30	9 979	1 848	905	411	-	0,47
iwc.		Ś	SMA 11 50/70	-	-	-	-	1 127	0,50
stru vna	KR5	W	(D) AC 16 W 35/50	4 776	565	494	132	-	0,48
ons róv		Р	(A) AC WMS 16 P 20/30	11 447	2 246	1 157	505	-	0,46
ъ ро		Ś	SMA 11 50/70	-	-	-	-	1 127	0,50
	KR6	W	(D) AC 16 W 35/50	4 776	565	494	132	-	0,48
		Р	(A) AC WMS 16 P 20/30	13 667	2 941	1 672	670	-	0,45

PARAMETRY PODBUDOWY Z KRUSZYWA

Dla wszystkich analizowanych konstrukcji przyjęto podbudowę z kruszywa łamanego stabilizowanego mechanicznie (KŁSM) o module sprężystości E = 400 MPa i współczynniku Poissona v = 0,30. Parametry te uniezależniono od temperatury.

PARAMETRY PODŁOŻA

Dla konstrukcji nawierzchni przeznaczonych dla ruchu KR4 obliczenia przeprowadzono dla modułu podłoża E = 100 MPa oraz dla konstrukcji dla ruchu o kategorii KR5 i KR6 dla modułu podłoża E = 120 MPa. W obu przypadkach przyjęto stały współczynnik Poissona podłoża gruntowego na poziomie v = 0,35. Parametry te uniezależniono od temperatury.

PARAMETRY OBCIĄŻENIA

Obliczenia wykonano dla obciążenia konstrukcji nawierzchni identycznym jak w punkcie 5.2.1: koło pojedyncze, pionowa siła wywierana przez koło nawierzchnię - 57,5 kN, ciśnienie kontaktowe 850 kPa równomiernie rozłożone na powierzchni kołowej śladu styku koła z nawierzchnią, prędkość ruchu koła po nawierzchni stała, równa 60 km/h (16,67 m/s), założenie zerowych sił poziomych stycznych w płaszczyźnie styku opony z nawierzchnią.

6.2.2. Wyniki obliczeń w VEROAD

Obliczenia w programie komputerowym VEROAD przeprowadzono dla pionowych nawierzchni, przemieszczeń W będących suma przemieszczeń nieodwracalnych (trwałych) oraz przemieszczeń odwracalnych. Analizie poddano wyniki dla: powierzchni warstwy ścieralnej (powierzchni konstrukcji nawierzchni), powierzchni górnej warstwy wiążącej oraz powierzchni górnej podbudowy asfaltowej. Wyniki obliczeń w programie VEROAD przyjętych konstrukcji nawierzchni pokazano na rysunkach ogólnych i szczegółowych.

Rysunki 6.9-6.14 pokazują wykresy ogólne przedstawiające wartości przemieszczeń pionowych w zależności od odległości od środka obciążenia (śladu zastępczego koła na nawierzchni). Każdy z tych wykresów należy interpretować w sposób opisany w punkcie 5.2.2.

Na rysunku 6.15 pokazano występujące przesunięcie punktu występowania maksymalnych przemieszczeń pionowych względem środka obciążenia.

Pozostałe rysunki (6.16-6.20) pokazują wykresy szczegółowe, na których zaprezentowano maksymalne wartości występujących przemieszczeń pionowych w nawierzchni i porównano je na różnych głębokościach w różnych analizowanych konstrukcjach.

Rys. 6.9. Zależność przemieszczenia pionowego na powierzchni warstwy ścieralnej konstrukcji typu A dla ruchu KR4 w zależności od odległości od środka obciążenia przy różnych temperaturach powierzchni warstwy ścieralnej.

Rys. 6.10. Zależność przemieszczenia pionowego na powierzchni warstwy ścieralnej konstrukcji typu B dla ruchu KR4 w zależności od odległości od środka obciążenia przy różnych temperaturach powierzchni warstwy ścieralnej.

Rys. 6.11. Zależność przemieszczenia pionowego na powierzchni warstwy ścieralnej konstrukcji typu A dla ruchu KR5 w zależności od odległości od środka obciążenia przy różnych temperaturach powierzchni warstwy ścieralnej.

Rys. 6.12. Zależność przemieszczenia pionowego na powierzchni warstwy ścieralnej konstrukcji typu B dla ruchu KR5 w zależności od odległości od środka obciążenia przy różnych temperaturach powierzchni warstwy ścieralnej.

Rys. 6.13. Zależność przemieszczenia pionowego na powierzchni warstwy ścieralnej konstrukcji typu A dla ruchu KR6 w zależności od odległości od środka obciążenia przy różnych temperaturach powierzchni warstwy ścieralnej.

Rys. 6.14. Zależność przemieszczenia pionowego na powierzchni warstwy ścieralnej konstrukcji typu B dla ruchu KR6 w zależności od odległości od środka obciążenia przy różnych temperaturach powierzchni warstwy ścieralnej.

Rys. 6.15. Przykładowa zależność (dla konstrukcji typu A kategorii ruchu KR4 dla powierzchni warstwy ścieralnej) wartości sumy przemieszczenia pionowego od odległości od środka obciążenia (fragment)

					-					
		powie	rzchnia wa	arstwy	powie	rzchnia wa	arstwy	powie	rzchnia wa	arstwy
konstr.	T _{0.max} [°C]		ścieralnej			wiążącej		, p	odbudow	у
	-,	KR4	KR5	KR6	KR4	KR5	KR6	KR4	KR5	KR6
	30	1,0885	0,8332	0,7313	1,0963	0,8376	0,7339	1,1037	0,8442	0,7395
ма	35	1,1409	0,8746	0,7673	1,1514	0,8812	0,7715	1,1609	0,8894	0,7785
IMO.	40	1,1957	0,9183	0,8054	1,2101	0,9279	0,8120	1,2213	0,9375	0,8203
dsta	45	1,2539	0,9651	0,8456	1,2715	0,9771	0,8540	1,2850	0,9888	0,8640
bod	50	1,3094	1,0102	0,8850	1,3332	1,0273	0,8977	1,3485	1,0406	0,9090
	55	1,3682	1,0590	0,9273	1,3974	1,0803	0,9434	1,4144	1,0951	0,9561
	30	1,1194	0,8585	0,7537	1,1281	0,8637	0,7565	1,1368	0,8710	0,7627
cza	35	1,1729	0,9008	0,7903	1,1846	0,9084	0,7950	1,1953	0,9174	0,8026
aw	40	1,2286	0,9457	0,8298	1,2447	0,9565	0,8370	1,2572	0,9670	0,8458
ýwn	45	1,2882	0,9941	0,8717	1,3079	1,0076	0,8816	1,3229	1,0202	0,8916
por	50	1,3451	1,0410	0,9133	1,3713	1,0598	0,9275	1,3882	1,0738	0,9386
	55	1,4058	1,0919	0,9582	1,4375	1,1149	0,9757	1,4563	1,1303	0,9878

Tablica 6.10. Wartości maksymalnego przemieszczenia pionowego (trwałego i odwracalnego) dla analizowanych konstrukcji w zależności od warstwy konstrukcyjnej oraz temperatury powierzchni warstwy ścieralnej

Rys. 6.16. Porównanie zależności maksymalnej wartości sumy przemieszczenia trwałego i odwracalnego pionowego od temperatury powierzchni warstwy ścieralnej – przypadki dla konstrukcji typów A i B przy różnych kategoriach ruchu.

Rys. 6.17. Porównanie zależności maksymalnej wartości sumy przemieszczenia trwałego i odwracalnego pionowego od temperatury powierzchni warstwy wiążącej – przypadki dla konstrukcji typów A i B przy różnych kategoriach ruchu.

Rys. 6.19. Porównanie zależności maksymalnej wartości sumy przemieszczenia trwałego i odwracalnego pionowego od temperatury powierzchni warstwy ścieralnej konstrukcji typu A – przypadki dla różnych warstw konstrukcyjnych przy różnych kategoriach ruchu.

Rys. 6.20. Porównanie zależności maksymalnej wartości sumy przemieszczenia trwałego i odwracalnego pionowego od temperatury powierzchni warstwy ścieralnej konstrukcji typu B – przypadki dla różnych warstw konstrukcyjnych przy różnych kategoriach ruchu.

6.2.3. Analiza wyników obliczeń

- Z przeprowadzonych analiz wynika, że także przy pojedynczej warstwie AC WMS w konstrukcji nawierzchni, podobnie jak w sytuacji gdy materiał ten zastosowano do warstwy wiążącej i podbudowy asfaltowej, maksymalne przemieszczenia pionowe występują zawsze (dla wszystkich przeanalizowanych głębokości, kategorii ruchu i typów konstrukcji) ok. 10 cm za środkiem śladu styku koła z nawierzchnią.
- 2) Czym wyższa jest kategoria ruchu (grubsza jest warstwa podbudowy asfaltowej) w konstrukcjach obliczeniowych tym mniejsze są maksymalne przemieszczenia pionowe w nawierzchni (będące sumą przemieszczeń trwałych i odwracalnych), zarówno na powierzchni warstwy ścieralnej, wiążącej jak i podbudowy asfaltowej.
- 3) Obliczenia modelowe konstrukcji nawierzchni pokazały, że niezależnie od grubości warstw asfaltowych, kategorii ruchu oraz analizowanego poziomu (powierzchnia warstwy ścieralnej, wiążącej i podbudowy asfaltowej) zawsze przemieszczenia pionowe w konstrukcjach typu A (w. wiążąca AC WMS W + podbudowa AC) są mniejsze niż w konstrukcjach typu B (w. wiążąca AC + podbudowa AC WMS). Różnice pomiędzy przemieszczeniami w obu typach konstrukcji niezależnie od analizowanego przypadku są do siebie zbliżone. Można na podstawie powyższych przykładów wnioskować, że użycie AC WMS do warstw wyżej leżących (wiążących) jest bardziej wskazane dla zmniejszenia

ewentualnych przemieszczeń trwałych powstających w nawierzchni w wyższych temperaturach.

6.3. Literatura

- [6.1] Asphalt Institute: "Asphalt Overlays for Highway and Streets Rehabilitation", Manual Series, 17 June 1983,
- [6.2] Boutin G., Lupien C.: "Thermal cracking of asphalt pavement" Euroasphalt and Eurobitume Congress, Barcelona, Hiszpania, 2000,
- [6.3] Ehrola E.: "On the temperature of road structures" Oulu Finland, 1974,
- [6.4] Kallas B.F.: "Asphalt pavement temperatures". Highway Research Record number 150, Highway Research Board, 1-91,
- [6.5] Katalog typowych konstrukcji nawierzchni podatnych i półsztywnych, IBDiM, GDDKiA, Warszawa, 1997
- [6.6] Sybilski D., Mirski K.: "Dobór asfaltu do nawierzchni w polskich warunkach klimatycznych z uwzględnieniem procedur SHRP/Superpave", VI Międzynarodowa Konferencja "Trwałe i bezpieczne nawierzchnie drogowe", Kielce 2000, T1 s. 213 – 221,
- [6.7] Ossowski !!!!

7. Ocena stanu technicznego odcinków dróg na których zastosowano beton asfaltowy o wysokim module sztywności

7.1. Zebranie danych o odcinkach dróg na których zastosowano beton asfaltowy o wysokim module sztywności

Od roku 2002 do roku 2012 wybudowano w Polsce kilkaset kilometrów odcinków dróg z zastosowaniem betonów asfaltowych o wysokim module sztywności. Technologia ta była wykorzystywana zarówno na drogach krajowych, jak i na drogach niższych klas w tym na drogach miejskich. Intensywny przyrost odcinków z zastosowaniem betonów asfaltowych AC-WMS nastąpił po roku 2009.

W celu uzyskania podstawowych informacji o odcinkach dróg z zastosowaniem betonów asfaltowych AC-WMS zdecydowano się wysłać ankiety do największych zarządców dróg: Generalnych Dyrekcji Dróg Krajowych, Zarządów Dróg Wojewódzkich jak i Zarządów Dróg w miastach o liczbie mieszkańców większej od 100 000 osób. Celem przeprowadzonych ankiet było uzyskanie informacji dotyczących:

- a) ilości oraz lokalizacji odcinków,
- b) okresu czasu w jakim wykonano odcinki,
- c) rodzaju materiałów zastosowanych na danym odcinku,
- d) problemów występujących przy budowie i odbiorze odcinków,
- e) zniszczeń, które wystąpiły na danym odcinku po oddaniu do użytkowania.

Jako, że nie otrzymano odpowiedzi od wszystkich Zarządców Dróg zdecydowano się uzupełnić informacje w oparciu o materiały zawarte na stronie GDDKiA [7.4], literaturę [7.9, 7.10] oraz w oparciu o prace własne prowadzone na Katedrze Inżynierii Drogowej Politechniki Gdańskiej w roku 2012 [7.1, 7.5, 7.6, 7.7].

7.1.1. Ankiety dotyczące zastosowania betonów asfaltowych o wysokim module sztywności

W roku 2011 do 73 Zarządców Dróg (16 oddziałów GDDKiA, 16 oddziałów ZDW oraz 41 Zarządców Dróg w miastach powyżej 100 tyś mieszkańców) wysłano ankiety dotyczące zastosowań betonów asfaltowych o wysokim module sztywności AC-WMS. Wygląd i treść ankiety zostały przedstawione na rysunku 7.1

Ankieta dotycząca stosowania betonu asfaltowego o wysokim module sztywności (AC-WMS)

ANKIETA DO FYCZĄCA STOSOWANIA BETONU ASFAL TOWEGO O WYSOKIM MODULE SZTYWNOŚCI (AC-WMS)

Dane ogólne o odcinku:

Administrator:	
Numer drogi:	
Kilemetraz:	
Kategoria ruchu:	
Rok wykonania:	
Generalny Wykonawca.	

Dane o warstwach z AC-WMS:

Rodzaj robot budowlanych:	 Budowa nowej drogi od podstaw Przebudowa istniejącego odeinka 	ı drogi	
Grubosci oraz rodzaje kolejny	eh warstw nawieizehni.		
			••••
O ile nie sprawi to klopotu pro (obliczeń trwalości konstrukcj Wykonawca warstw AC-WM	osilibyśniy o udostępnienie projekt ji nawierzehni), o ile taki był w pre S:	u konstrukę i nawierze jekcie	hiu
Projekt AC-WMS oparty o	Zeszyt IBDiM nr 63 W. 2 2008r. unre (ultre?)	Zeszyt IBDiM or 7 W1 2 2010r	0
Rodzaj zastosowanego astalic Warstwa wiażaca	1 w warstwach AC-WMS.		
Warstwa podbudowy:			
Zawartość asfaltu w warstwać	h AC-WMS		
Warstwa wiążąca:			
Warstwa podbudowy: Jeśh to możliwe prosilibyśmy Ocena wykonanych prac:	o do aczeme recept zastosowanyc	h micszanek AC-WMS	
Czy napotkano na problemy p Jeśli tak to jakie:	odezas wbudowywania warstwy	Nie	Tak
· · · · · · · · · · · · · · · · · · ·			···· ···
			••••

Sprawę prowadzi: mgr inż. Mariusz Jaczewski, <u>manusz jaczewski@wilis.pg.gda.pl</u>, tel. 58 347 27 82

Ankieta dotycząca stosowania betonu asfaltowego o wysokim module sztywności (AC-WMS)

Czy Jesi	: t li I	oy l tak	y . D	рг Б Ј	ol al	ole Lie	311 8.	ņ	r F	ez	Ņ,	ю	lb	01	Ne	• •	мa	ľs	14	2											N	in:	,				I	'al
		••	• •		·		• •				••••												••••	 										• •	• •			
											• •			•••															-	•••					•••			
• • • •		•••	•••		•••						••••						••••			• • •	•••	 •••	,	•••	• • •	••••	• •		 •••			••••			 •••	•••	• •	• • • •

Ocena wykonanego odcinka:

Czy na odcinku z wbudowaną warstwa AC-WMS wystąpiły następujące uszkodzenia:

Koleiny	Nie	Tak	
 glębokość 			brak danych
Spękania popizeczne	Nie	Tak	
 iloše spekaň na kilometr 			brak danyeh
Spękania podłużne	Nic	Tak	
Oblamania krawędzi	Nie	Tak	
Zapadnięcia	Nie	Tak	
Uszkodzenia powierzelnitowe	Nic	Tak	
lune uszkodzenia:			
and the second			
Pozostale uwagi:			
Proszę w pisać w szystko to co spra	awiało trudn	ości lub stanov	vilo jakiš problem, a nie
zostalo ujete w ankiecic.			
		••••••	
			······

Dane kontaktowe, dane potrzebne w celu ewentualnych dalszych kontaktów:

lmię i Nazwisko											 		
Telefon													
Fimail													

Podziękowania

Dziękujemy bardzo za czas poswięcony na wypełnienie ankiety oraz za udostępnienie dodatkowych materiatów dotyczących mieszanek AC-WMS. Państwa informacje będj bradzo istorie do oceny zachowania się mieszanek AC-WMS w warnikach rzeczywski ekspleatacji

Sprawę prowadzi: mgr inż. Mariusz Jaczewski, <u>mariusz jaczewski@wilis.pg.gda.pl</u>, tel. 58 347 27 82

Rysunek 7.1. Ankieta dotycząca stosowania betonu asfaltowego o wysokim module sztywności (AC-WMS)

Do dnia 30 listopada 2012 roku otrzymano łącznie 37 odpowiedzi (12 oddziałów GDDKiA, 8 oddziałów ZDW oraz 17 Zarządców Dróg w miastach powyżej 100 tyś mieszkańców). Uzyskano podstawowe informacje dotyczące:

- 47 odcinków wybudowanych o łącznej długości ~355 km
- 12 odcinków budowanych (stan na marzec 2012) o łącznej długości ~180 km
- 2 odcinków planowanych o nie znanej długości.

W 2012 roku zdecydowano się przygotować drugą serię ankiet by wytypować odcinki referencyjne do badań terenowych. Odzew na przesłaną ankietę był jednak niewielki, dlatego zdecydowano się wytypować odcinki referencyjne na podstawie danych własnych. Wygląd i treść ankiety przedstawia rysunek 7.2.

Ankieta dotycząca oceny stanu nawierzchni dróg budowanych lub wybudowanych w ostatnich latach

ΛΝΚΙΕΤΛ

DOTYCZĄCA OCENY STANU NAWIERZCHN: DRÓG BUDOWANYCH LUB WYBUDOWANYCH W OSTATNICH LATACH (PROSZĘ OPISAĆ TYLKO DUŻE KONTRAKTY /KLASY A.S.GP!)

Dane ogólne o odcinku:

Administrato:	 	 				 		 				
Numer drogi.	 	 		•••	 	 	••	 		.,		
Kilometraž:												
Kategoria ruchu:	 	 	 		 	 	 		 		 	
Rok wykonania:												
Generalny Wykonawca:							 					

Dane o warstwach konstrukcyjnych:

1.	Rodzaj robót budowlanych:	Budewa nowej drogi od podstaw
		Przebudowa lub remont istniejącego odcinka

1p.	Rodzaj warstwy	Material warstwy	Grubosé warstwy
I.	W-wa. scieralna		
2	Wona wijođes		
3	Wowa podbadowy bitumicznej		
4	W-wa podbudowy		
5	W-wy wzmoenionego podłoża		

O ilé nie sprawi to klopotu prosihlyšmy o udostępinenie projektu konstrukcji nawierzchm tobliczeń trwalości konstrukcji nawierzchni), jesli był w projekcie.

III. Rodząj zastosowanej mieszanki mineralno-asfaltowej (wraz z zawartością i rodzajem asfaltu).

Warstwa ścieralna:		
Warstwa wigząca:		·····
Warstwa podbudowy:		
Jeśh to możliwe prosilibysmy o dolączenie recept zastosowanych miesz	anek bitun	neznych.
<u>Ocena wykonanych prac:</u> Czy napotkano na problemy podczas wbudowywania warstw Jeśh tak to jakie:	Nie	Tak

Sprawę prowadzi: dr inż. Bohdan Dołżycki, bohdan.dolzycki@wilis.<u>og.g</u>da.pl, tel. 58 347 26 55

Ankieta dutycząca oceny stanu nawierzchni dróg budowanych lub wybudowanych w ostatnich latach

Czy byly problemy przy odbiorze warstw Jesli tak to jakie.	Nie	Tak

Ocena wykonanego odcinka:

Czy na odcinku wystąpiły następujące uszkodzenia:

Koleiny	Nic	Tak	
Spekania poprzeczne	Nie	Tak	
 otwarte poprzeczne szwy robocze; 	1-10 km	11-20-km	- 20 km
 spekania poprzeczne o innyru charakterze; 	1-10 ⁻ km	11-20/km	> 20/1 m
- czy spękania pojawiły się po okresie zimowym?	Nie	Tak	
Spekana podłużne	Nie	Tak	
Oblamonia krawędzi	Nie	Tak	
Zapadnięciu	Nie	Tak	
Uszkodzenia powierzchniowe	Nie	lak	
Inne uszkodzema:			
Percetala nucaria			
<u>Prosze wnisać wszystka to co sprawiało trudności</u>	lub stanowiło	iakiš proble	n anie
zostalo ujete w ankiecie.	100 30000000	Tara: hours	<u>u, a nac</u>
and a second second second second second second second			
Dane kontaktowe, dane potrzebne w celu ewentus	alny <mark>ch dalszy</mark> c	h kontaktów	

Imię i Nazwisko															
Telefon			• • •	 ••		,	 	 	••••	,		 	 	 	
Fmail					•••										

Podziekowania

Dziękujemy bardzo za czas poświęcony na wypelnieme ankiety oraz za udostępnienie dodatkowych materiałow.

Sprawę prowadzi i dri nż. Bohdan Dołżycki, bohdan dolzycki@wilis.pg.gda.pl, tel. 58 347 26 55

Rysunek 7.2. Ankieta dotycząca oceny stanu nawierzchni dróg budowanych lub wybudowanych w ostatnich latach

drogi

7.1.2. Informacje uzyskane z prac własnych Katedry Inżynierii Drogowej Politechniki Gdańskiej

W roku 2012 w ramach pracy własnej zebrano informację o 5 odcinkach autostrad, 1 odcinku drogi ekspresowej oraz 1 odcinku drogi krajowej, które nie były uwzględnione w ankietach od Zarządców Dróg. Informacje dotyczą:

2 odcinków dróg wybudowanych o łącznej długości ~20 km,

5 odcinków dróg budowanych o łącznej długości ~95 km.

7.1.3. Źródła pozostałe

W celu uzupełnienia informacji o odcinkach wybudowanych i budowanych z zastosowaniem betonów asfaltowych o wysokim module sztywności skorzystano także z następujących pozycji literatury:

- Sybilski D., Jezierska D., Maliszewski M., *Szybka naprawa nawierzchni ulic Warszawy* [7.9],
- Sybilski D., Bańkowski W., Prace badawcze laboratoryjne i w pełnej skali nad zastosowaniem betonu asfaltowego o wysokim module sztywności w nawierzchni drogowej [7.10],
- GDDKiA Inwestycje, gdzie była wykorzystywana technologia WMS (<u>https://www.gddkia.gov.pl/userfiles/articles/w/wykonawcy-a2-skladaja-programy-n_10597/wykaz%20inwestycji%20WMS%202%2003-%20v1b.pdf</u>) [7.4]

Informacje zawarte w powyższych materiałach zawierają tylko lokalizację odcinków, bez szczegółowych danych dotyczących wykorzystanych materiałów czy też konstrukcji drogi.

7.2. Zestawienie danych o odcinkach dróg na których zastosowano beton asfaltowy o wysokim module sztywności

Na rysunku 7.3 przedstawiono wszystkie odcinki z zastosowaniem technologii WMS, o których pozyskano dane z ankiet, źródeł pozostałych oraz materiałów własnych. Na rysunku wykorzystano następujące oznaczenia:

- kolor niebieski odcinki wytypowane do dalszej szczegółowej obserwacji,
- kolor żółty odcinki, o których informacje pochodzą z prac własnych Katedry,
- kolor szary pozostałe odcinki z zastosowaniem technologii WMS, które nie zostały wytypowane do dalszej oceny.

Rysunek 7.3 Odcinki wybudowane lub budowane z zastosowaniem technologii WMS

7.3. Odcinki wytypowane do oceny stanu technicznego

Ze względu na występowanie dużej ilości odcinków z zastosowaniem technologii WMS zdecydowano objąć dalszą obserwacją wybrane odcinki. Podstawowymi kryteriami, w oparciu o które wytypowano odcinki były:

- a) lokalizacja i klimat (odcinki położone są w strefach zróżnicowanego klimatu)
- b) wiek (wytypowano wszystkie najstarsze odcinki, pominięto województwa z odcinkami wyłącznie budowanymi lub oddanymi do użytku w ostatnich 2 latach)
- c) zróżnicowane konstrukcje nawierzchni oraz wykorzystane materiały
- d) zróżnicowana geometria pozioma i pionowa
- e) zróżnicowane obciążenie ruchem

Na podstawie powyższych kryteriów wybrano do dalszej obserwacji odcinki położone w następujących województwach: Podlaskie, Wielkopolskie, Opolskie, Dolnośląskie, Pomorskie i Zachodniopomorskie.

7.4. Ocena stanu technicznego odcinków dróg w 2012 r.

W roku 2012 wykonano ocenę stanu technicznego wytypowanych odcinków. Ocena polegała na wizualnym zidentyfikowaniu uszkodzeń nawierzchni oraz określeniu stopnia ich szkodliwości. Odcinki badano w miesiącach od lipca do września. Zastosowano dwie techniki oceny wizualnej stanu technicznego nawierzchni, które dokładniej opisano w punkcie 7.4.1. W przypadku, gdy nie uzyskano dokładnych danych o odcinku, inwentaryzację w roku 2012 wykorzystano jako pomiar zerowy. Dalsza ocena odcinków oraz występujących zniszczeń będzie wykonywana co rok. W punktach od 7.4.2.1 do 7.4.6.14 przedstawiono podstawowe informacje o wytypowanych odcinkach oraz ocenę stanu technicznego wykonaną w roku 2012.

7.4.1. Metodologia oceny stanu technicznego odcinków

Metodologię oceny stanu technicznego nawierzchni ustalono po wcześniejszym przeprowadzeniu studiów literatury, w której rozpoznano systemy oceny wizualnej wykorzystywane w Polsce (SOSN) [7.11], USA (SHRP) [7.2], RPA [7.3] i Norwegii [7.8].

Uszkodzeniami rozpoznawanymi podczas oceny wizualnej są:

- a) spękania poprzeczne i podłużne
- b) spękania siatkowe
- c) łaty
- d) wyboje
- e) uszkodzenia powierzchniowe
- f) koleiny
- g) deformacje
- h) stan lepiszcza nawierzchni

Podczas inwentaryzacji uszkodzeń oceniano również ich stopień szkodliwości,, według trzech klas:

- a) niski
- b) średni
- c) wysoki

Tablica 7.1 Klasyfikacja spękań podłużnych według metod wizualnej oceny stanu nawierzchni: Polskiej (SOSN), USA (SHRP), RPA, Norweskiej

Stan	Metoda oceny wizualnej stanu nawierzchni							
zniszczenia (stopień szkodliwość)	Norweskie	SHRP	SOSN	RPA				
niski	Spękanie mniejsze niż 5 mm	Spękanie mniejsze niż 6 mm lub zalane spękanie w dobrym stanie, gdzie nie można ocenić szerokości spękania	Pęknięcia zalane i szczelne. Pęknięcia nieszczelne bez wykruszeń na krawędziach	niewielkie spękania				
średni	Spękania od 5-20 mm. Na niektórych krawędziach mogą pojawić się obłamania	Spękania od 6 do 19 mm i spękania <19 mm z przyległe mało intensywnymi przypadkowymi pęknięciami		wyraźne otwarte pęknięcia (~3 mm) z lekkimi obłamaniami, deformacjami lub drugorzędnymi spękaniami w rogach w formie trójkątów				
wysoki	Spękania powyżej 20 mm. Występują obłamania krawędzi spękania	spękania powyżej 19 mm lub spękania <19 mm z przyległymi intensywnymi spękaniami przypadkowymi (random cracking)	Pęknięcia z wyraźnymi wykruszeniami na krawędziach lub z siatką pęknięć	Otwarte pęknięcia (>3mm) z intensywnymi obłamaniami, drugorzędnymi spękaniami lub deformacjami widocznymi w otwartych spękaniach, lub szerokie otwarte spękania (>10 mm) z niewielkimi				

			lub bez drugorzędnych uszkodzeń
Podgrupy spękań	Spękania podłużne temperaturowe Spękania podłużne krawędziowe Spękanie podłużne na poszerzeniu Inne spękania podłużne	Spękania podłużne w śladzie kół Spękania podłużne poza śladem kół	

Tablica 7.2 Klasyfikacja spękań poprzecznych według metod wizualnej oceny stanu nawierzchni: Polskiej (SOSN), USA (SHRP), RPA, Norweskiej

Stan	Metoda oceny wizualr	nej stanu nawierzchni		
zniszczenia	Norweskie	SHRP	SOSN	RPA
(stopien				
niski	Spękanie mniejsze niż 5 mm	Spękanie mniejsze niż 6 mm lub zalane spękanie w dobrym stanie, gdzie nie można ocenić szerokości spękania	Pęknięcia zalane i szczelne. Pęknięcia nieszczelne bez wykruszeń na krawędziach	niewielkie spękania
średni	Spękania od 5-20 mm. Na niektórych krawędziach mogą pojawić się obłamania	Spękania od 6 do 19 mm i spękania <19 mm z przyległe mało intensywnymi przypadkowymi pęknięciami		wyraźne otwarte pęknięcia (~3 mm) z lekkimi obłamaniami, deformacjami lub drugorzędnymi spękaniami w rogach w formie trójkątów
wysoki	Spękania powyżej 20 mm. Występują obłamania krawędzi spękania	spękania powyżej 19 mm lub spękania <19 mm z przyległymi intensywnymi spękaniami przypadkowymi (random cracking)	Pęknięcia z wyraźnymi wykruszeniami na krawędziach lub z siatką pęknięć	Otwarte pęknięcia (>3mm) z intensywnymi obłamaniami, drugorzędnymi spękaniami lub deformacjami widocznymi w otwartych spękaniach, lub szerokie otwarte spękania (>10 mm) z niewielkimi lub bez drugorzędnych uszkodzeń
Podgrupy spękań	Poprzeczne Spękania (rysy) Spękania poprzeczne termiczne Inne spękania poprzeczne	Spękania odbite (oddzielna grupa, wymagania jw)	spękania na całą szerokość pasa spękania do połowy szerokości pasa	

Tablica	7.3	Klasyfikacj	ja spękaŕ	i siatkowyc	h według	metod	wizualnej	oceny	stanu
nawierz	chni	: Polskiej (S	SOSN), U	SA (SHRP)	, RPA, No	rweskie	j		

Stan	Metoda oceny wizualnej stanu nawierzchni						
zniszczenia	Norweskie	SHRP	SOSN	RPA			
(stopień							
szkodliwość)							
NISKI	Spękania slatkowe włosowate, bez	Орszar spęкan bez lub z kilkoma	Pęknięcia zalane i szczelne.	spękania			
	obłamań na	połączonymi	Pęknięcia				
	krawędziach	spękaniami.	nieszczelne bez				
		Spękania bez	wykruszeń na				
		odprysków lub	krawędziach				
		zalane spękania.					
		Pompowanie nie					
fine die l	On alvania, siatluous	występuje					
sreani	Spękania slatkowe			wyrazne otwarte			
	odprysków i	spekań tworzących		pękilięcia (~3 mm) z lekkimi			
	wykruszeń na	całkowite ścieżki.		obłamaniami.			
	krawedziach	spekania moga		deformacjami lub			
	· ·	być lekko		drugorzędnymi			
		nadkruszone.		spękaniami w			
		Spękania mogą		rogach w formie			
		być zalane,		trójkątów			
		pompowanie nie					
wweaki	Siatka spokań o		Pokniocia z	Otwarta pokniacia			
WYSON	szerokości ok 5 mm	mocho	wyraźnymi	(S3mm) z			
	lub wiekszych z	wykruszonych	wykruszeniami na	intensywnymi			
	licznymi	połaczonych	krawedziach lub z	obłamaniami.			
	intensywnymi	spękań tworzących	siatką pęknięć	drugorzędnymi			
	odpryskami na	całkowitą ścieżkę.		spękaniami lub			
	krawędziach.	Fragmenty mogą		deformacjami			
	Istnieje ryzyko	się przemieszczać		widocznymi w			
	luźnych fragmentów	pod wpływem		otwartych			
		ruchu. Spękania		spękaniach, lub			
		Pompowanie może		szerőkie olwarie			
		być widoczne		mm) z niewielkimi			
				lub bez			
				drugorzędnych			
				uszkodzeń			
Podgrupy	niewielkoobszarowe						
spękań	spękania siatkowe						
	dużoobszarowe						
	spękania siatkowe						

Tablica 7.4	4 Klasyfikad	ja spękań	blokowych	według	metod	wizualnej	oceny	stanu
nawierzchr	ni: Polskiej (SOSN), US	SA (SHRP),	RPA, No	rweskie	j		

Stan	Metoda oceny wizualnej stanu nawierzchni								
zniszczenia (stopień szkodliwość)	Norweskie	SHRP	SOSN	RPA					
niski	-	spękania o średniej szerokości < 6 mm lub zalane spękania w dobrej kondycji		Niewielkie pęknięcia					
średni	-	Spękania od 6 do		wyraźne otwarte					
	19 mm i spękania <19 mm z przyległe mało intensywnymi przypadkowymi pęknięciami	pęknięcia (~3 mm) z lekkimi obłamaniami, deformacjami lub drugorzędnymi spękaniami w rogach w formie trójkątów							
----------	---	---							
wysoki -	spękania powyżej 19 mm lub spękania <19 mm z przyległymi intensywnymi spękaniami przypadkowymi (random cracking)	Otwarte pęknięcia (>3mm) z intensywnymi obłamaniami, drugorzędnymi spękaniami lub deformacjami widocznymi w otwartych spękaniach, lub szerokie otwarte spękania (>10 mm) z niewielkimi lub bez drugorzędnych uszkodzeń							

Tablica 7.5 Klasyfikacja łat według metod wizualnej oceny stanu nawierzchni: Polskiej (SOSN), USA (SHRP), RPA, Norweskiej

Stan	Metoda oceny wizualr	nej stanu nawierzchni		
zniszczenia	Norweskie	SHRP	SOSN	RPA
(stopień				
szkodliwość)				
niski	-	Łata ma co najwyżej nisko intensywne zniszczenia dowolnego typu lub dowolny typ koleinowania <6 mm. Pompowanie nie jest ewidentne	Łata szczelnie połączona z nawierzchnią lub z niewielkimi pęknięciami na połączeniach	Łaty w dobrej kondycji
średni	-	Łata ma średnią intensywność zniszczeń dowolnego rodzaju lub koleiny od 6 do 12 mm, pompowanie nie jest ewidentne		Łaty z wyraźnymi uszkodzeniami (spękania i/lub deformacje)
wysoki	-	Łata ma wysoką intensywność zniszczeń dowolnego rodzaju, w tym koleiny > 12 mm lub łata ma dodatkową łatę w sobie, pomopowanie może być	Łata połączona z nawierzchnią nieszczelnie (pęknięcia i wykruszenia)	Bardzo uszkodzone łaty (łata rozrywa się i/lub ma intensywne deformacje ze spękaniami)

ewidentne			
		ewidentne	

Tablica 7.6 Klasyfikacja wybojów według metod wizualnej oceny stanu nawierzchni: Polskiej (SOSN), USA (SHRP), RPA, Norweskiej

Stan	Metoda oceny wizualr	nej stanu nawierzchni		
zniszczenia	Norweskie	SHRP	SOSN	RPA
(stopień				
szkodliwość)				
niski	Wybój o średnicy	Wyboje o		brak definicji dla
	mniejszej niż 15 cm	minimalnej		wyboi
		średnicy 15 cm		
		Głębokość < 25		
		mm		
średni	Wybój o średnicy od	Wyboje o		średnica ~200
	15 do 30 cm	minimalnej		mm i głębokość
		średnicy 15 cm		>25 mm
		Głębokość od 25		
		do 50 mm		
wysoki	Wybój o średnicy	Wyboje o	Wszystkie wyboje	średnica >300
	większej od 30 cm	minimalnej	maja duży stopień	mm i głębokość
		średnicy 15 cm	szkodliwości	>50 mm i/lub
		Głębokość > 50		intensywne
		mm		zniszczenia
				drugorzędne

Tablica 7.7 Klasyfikacja uszkodzeń powierzchniowych według metod wizualnej oceny stanu nawierzchni: Polskiej (SOSN), USA (SHRP), RPA, Norweskiej

		/ /	1 //	
Stan	Metoda oceny wizualnej stanu nawierzchni			
zniszczenia	Norweskie	SHRP	SOSN	RPA
(stopień				
szkodliwość)				
niski	Łatwo widoczne	brak		bardzo niewielkie ubytki kruszywa
	uszkodzenia,	kryteriów		lub niewielkie łuszczenie się
	ale nie mające	oceny		nawierzchni, ciężko rozpoznawalne
	praktycznego			z pojazdu
	wpływu na			
	komfort jazdy,			
	bezpieczeństwo			
	ruchu			
	drogowego lub			
	dostępność			
średni	Szkody w			Zauważalne ubytki warstwy
	pewnym			asfaltowej na małych obszarach
	stopniu			i/lub znaczne łuszczenie się
	wpływają na			nawierzchni, wyraźnie
	komfort jazdy,			podziurawiony (pitted) wygląd
	bezpieczeństwo			
	ruchu			
	drogowego lub			
	dostępność			
wysoki	Uszkodzenia		Wszystkie	całkowite zniszczenie całej
	mają istotny		uszkodzeni	warstwy asfaltowej
	wpływ na		a uznaje	
	komfort jazdy,		się za duży	
	bezpieczeństwo		stopień	
	ruchu		szkodliwoś	
	drogowego lub		ci	
	dostępność			
Podtypy	chropowata	Pocenie sie		Pocenie się nawierzchni:

Tablica 7.8 Klasyfikacja deformacji według metod wizualnej oceny stanu nawierzchni: Polskiej (SOSN), USA (SHRP), RPA, Norweskiej

Stan	Metoda oceny wizua	llnej stanu nawierzchr	ni	
zniszczenia	Norweskie	SHRP	SOSN	RPA
(stopień				
szkodliwość)				
niski	widoczne		Ocena klas	brak definicji dla
	niedoskonałości,		równości	zapadnięcia
	ale bez		podłużnej (4 klasy	
	znaczącego		w zależności od	
	wpływu na komfort		klasy drogi)	
	jazdy,			
	bezpieczeństwo			
	ruchu drogowego			
	lub dostępności			
	(na odcinku 100 m			
	odległości, co			
	odpowiada IRI			
	<3,0) Dla			

	lokalnych		
	nierówności może		
	być opisana jako		
	odchylenia od 5 do		
	10 mm mierzone		
	na łacie 3 m		
średni	Szkody w pewnym		zapadnięcie się
	stopniu wpływają na		rozwija, mała
	komfort jazdy,		depresia <30 mm.
	bezpieczeństwo		poczatki
	ruchu drogowego		uszkodzeń
	lub dostepność (na		powierzchniowych
	odcinku 100 m		p •
	odległości		
	odpowiada IRI 3.0 –		
	6.0 Na lokalnych		
	nierównościach o		
	małej propagacij		
	może być opisana		
	iako odchvlenia 10		
	do 20 mm miorzono		
un colci			interner rune
WYSOKI	SZKODY W		
	znacznym stopniu		zapadnięcie z
	wpływają na		utratą warstwy
	komfort jazdy,		wierzchniej i
	bezpieczenstwo		materiału lub duza
	ruchu drogowego		depresja >50 mm
	lub dostępność (na		
	odcinku 100 m		
	odległości,		
	odpowiada IRI >		
	6,0). Na lokalnych		
	nierównościach o		
	małej propagacji		
	może być opisana		
	jako odchylenia >		
	20 mm mierzone na		
	łacie 3 m		
Podtypy	Lokalne		
zniszczeń	uszkodzenia od		
	mrozu (wysadziny)		
	Lokalne		
	zapadnięcia (np		
	studzienek)		
	Deformacie		
	krawedzi		
	nawierzchni		
	(zapadniecia)		
	Nierówności		
	podłużne		

Tablica 7.9 Klasyfikacja kolein według metod wizualnej oceny stanu nawierzchni: Polskiej (SOSN), USA (SHRP), RPA, Norweskiej

	,· , , ·			
Stan	Metoda oceny wizualnej stanu nawierzchni			
zniszczenia (stopień	Norweskie	SHRP	SOSN	RPA
szkodliwość)				
niski	Koleiny o	brak kryteriów	A - <10 mm	ciężkie do
zniszczenia (stopień szkodliwość) niski	Norweskie Koleiny o	SHRP brak kryteriów	SOSN A - <10 mm	RPA ciężkie do

-					
		zagłębieniu <10 mm Nie wiążą się z niebezpieczeństwe m dla ruchu drogowego	zniszczenia (podaje się głębokość)		dostrzeżenia nienaprawiane (<5 mm)
	średni	Koleiny o zagłębieniu od 10 do 25 mm. Powodują niewielkie niebezpieczeństwo dla ruchu drogowego.		B – 11 – 20 mm	ledwo widoczne (10-15 mm)
	wysoki	Głębokość kolein >25 mm, ukształtowanie jezdni powoduje zagrożenie dla bezpieczeństwa ruchu drogowego		C i D – 21 mm – 30 mm i > 30 mm	intensywne, niebezpieczne, widoczne z poruszającego się pojazdu nawet przy wysokich prędkościach. Oddziałuje na stabilność kierunku (>30 mm)
	Podtypy zniszczeń	Uszkodzenia od opon z kolcami Deformacje			/

Tablica 7.10 Klasyfikacja stanu lepiszcza według metod wizualnej oceny stanu nawierzchni: RPA

Stan zniszczenia (stopień szkodliwość)	RPA
niski	Lepiszcze nie świeże ale lepiące, kolor nadal wyraźny czarny, bardzo trudno usunąć kruszywo z mieszanki (brak spękań skurczowych)
średni	wygląd lepiszcza poszarzały (brązowy), lepiszcze jest kruche ze względu na zwiększenie twardości i/lub kruszywo może być oderwane z mieszanki przy relatywnie niewielkiej sile (spękania skurczowe mogły pojawić się)
wysoki	Lepiszcze jest poszarzałe (brązowe) i bardzo kruche (w ogóle nie lepkie), elastyczność lepiszcza jest bardzo niska i/lub kruszywa mogą być oderwane z mieszanki bez wysiłku (można się spodziewać spękań powierzchniowych i utraty kruszywa)

Tablica 7.11 Klasyfikacja pompowania według metod wizualnej oceny stanu nawierzchni: RPA

Stan	RPA
zniszczenia	
(stopień	
szkodliwość)	
niski	pompowanie ledwo widoczne przy dokładnej inspekcji
średni	pompowanie widoczne z pojazdu. żadne lub niewielkie
	deformacje nawierzchni drogi obok spękania
wysoki	duży depozyt pyłów obok spękania i/lub intensywne
	deformacje spękania

Tablica	7.12	Klasyfikacja	deformacji	podłużnych	według	metod	wizualnej	oceny
stanu na	awierz	chni: RPA						

Stan zniszczenia (stopień szkodliwość)	RPA
niski	Falowanie powoduje niewielkie nierówności profilu drogi, jazda jest nadal gładka i komfortowa
średni	Falowanie jest wyraźnie widoczne i ma efekt na jakość jazdy. Kierowcy mogą musieć ograniczyć prędkość jazdy przy bliżej położonych deformacjach
wysoki	Falowanie powoduje bardzo kiepską jakość i bardzo niewygodną jazdę, droga niebezpieczna przy normalnych limitach prędkości. Ograniczenie prędkości może być narzucone

Wykorzystano dwie techniki oceny wizualnej, które można sklasyfikować w następujący sposób:

- a) Technika ogólna polega na ocenie stanu nawierzchni z jadącego z niewielką prędkością samochodu, w czasie jazdy zliczane są spękania poprzeczne i podłużne, łaty i wyboje. Jednocześnie odcinek jest rejestrowany na kamerze. Technika ta umożliwia zliczenie uszkodzeń i daje jednocześnie ogólny obraz stanu technicznego odcinka, jej wadą jest brak dokładnej informacji o lokalizacji uszkodzeń i jego zakresie (szerokość, długość, powierzchnia), informacje te mają charakter przybliżony. Zaletą tej techniki jest duże przyspieszenie pomiaru, dzięki czemu możliwe jest ocenienie dłuższych odcinków drogi w krótszym czasie.
- b) Technika precyzyjna polega przejściu i wnikliwym ocenieniu stanu technicznego nawierzchni. Lokalizowane i oceniane są wszystkie uszkodzenia, zaznaczany jest kształt uszkodzenia oraz jego cechy jak np. szkodliwość, długość i szerokość głębokość koleiny itp. Technika ta daje bardzo dokładny wynik oceny, jej wadą jest duża czasochłonność.

Inwentaryzację uszkodzeń przeprowadzono zgodnie z przyjętym schematem typowych uszkodzeń nawierzchni. Schemat uszkodzeń oraz ich symbole zamieszczono na rysunki 7.5. Wszystkie, występujące uszkodzenia zamieszczano na kartach oceny odcinka, której wzór zamieszczono na rysunku 7.4.

Ocenie podlegała również szkodliwość uszkodzeń. Zastosowano trzystopniową skalę oceny (niska, średnia i wysoka szkodliwość).

Rysunek 7.4 Szablon karty oceny wizualnej odcinka

Rysunek 7.5 Oznaczania najczęstszych uszkodzeń nawierzchni i ich symbole stosowane przy ocenie wizualnej odcinków

7.4.2. Województwo Dolnośląskie

7.4.2.1. Autostrada nr 8 odcinek Autostradowa Obwodnica Wrocławia

Kilometraż:	0+000 - 28+368,75				
Długość odcinka:	28,4 km				
Obciążenie ruchem:	KR5 – KR6				
Przekrój odcinka:	2x2+pas awaryjny				
Rok wykonania odcinka:	2011				
Wykonawca odcinka:	Budimex Dromex / Mostostal Warszawa / Strabag				
Typ inwestycji	Budowa nowej drogi od podstaw				
Konstrukcja nawierzchni	4 cm SMA				
odcinka oraz zastosowane	8 cm AC WMS 16 (25/55-60 5,0% lub 4,8%)				
materiały	18 cm AC WMS 16 (25/55-60 5,0% lub 4,8%)				
Dokument w oparciu o który	Zeszyt IBDiM nr 70				
zaprojektowano mieszanki					
AC WMS					
Ocena zniszczeń w 2012 r.	brak uszkodzeń odcinka				

Odcinek wykonywany jako dwie odrębne inwestycje i oddany do użytku w 2011 roku. Ze względu na klasę drogi ocena była wykonywana z pojazdu poruszającego się prędkością 60km/h. Jedynymi uszkodzeniami nawierzchni były niewielkie uszkodzenia mechaniczne warstwy ścieralnej. Nie zauważono spękań poprzecznych ani kolein. Zinwentaryzowano poprzeczne szwy robocze.

Na rysunkach 7.6-7.8 przedstawiono stan nawierzchni odcinka A8 w roku 2012

Rysunek 7.6 Stan nawierzchni odcinka A8 oceniony w roku 2012

Rysunek 7.7 Stan nawierzchni odcinka A8 oceniony w roku 2012

Rysunek 7.8 Stan nawierzchni odcinka A8 oceniony w roku 2012

7.4.2.2. Droga Ekspresowa nr 8 odcinek węzeł Pawłowice – węzeł Dąbrowa

Kilometraż:	0+500 - 22+593,31			
Długość odcinka:	22,093 km			
Obciążenie ruchem:	KR5-KR6			
Przekrój odcinka:	2x2			
Rok wykonania odcinka:	odcinek w budowie w czasie oceny			
Wykonawca odcinka:	Mota Engil			
Typ inwestycji	Budowa nowej drogi od podstaw			
Konstrukcja nawierzchni	4 cm SMA			
odcinka oraz zastosowane	8 cm AC WMS 16 (20/30 5,1% lub 5,0%)			
materiały	18 cm AC WMS 16 (20/30 5,1% lub 5,0%)			
Dokument w oparciu o który	WT-2 2010			
zaprojektowano mieszanki				
AC WMS				
Ocena zniszczeń w 2012 r.	nie wykonano oceny w roku 2012			

Ze względu na toczące się roboty budowlane i brak możliwości wjazdu na teren odcinka w roku 2012 nie dokonano oceny stanu nawierzchni.

7.4.2.3. Droga Ekspresowa nr 8 odcinek węzeł Cieśle – Węzeł Syców Wschód

Kilometraż:	29+800 - 54+910			
Długość odcinka:	25,11 km			
Obciążenie ruchem:	KR5 – KR6			
Przekrój odcinka:	2x2+pas awaryjny			
Rok wykonania odcinka:	odcinek w budowie w czasie oceny			
Wykonawca odcinka:	Skanska			
Typ inwestycji	Budowa nowej drogi od podstaw			
Konstrukcja nawierzchni	4 cm SMA			
odcinka oraz zastosowane	8 cm AC WMS 16 (20/30 4,7%)			
materiały	18 cm AC WMS 16 (20/30 4,8%)			
Dokument w oparciu o który	WT-2 2010			
zaprojektowano mieszanki				
AC WMS				
Ocena zniszczeń w 2012 r.	nie wykonano oceny w roku 2012			

Ze względu na toczące się roboty budowlane i brak możliwości wjazdu na teren odcinka w roku 2012 nie dokonano oceny stanu nawierzchni.

Kilometraż:	370+700 - 389+407			
Długość odcinka:	18,707 km			
Obciążenie ruchem:	KR5 – KR6			
Przekrój odcinka:	1x2			
Rok wykonania odcinka:	2010			
Wykonawca odcinka:	BRDIM Kędzierzyn-Koźle			
Typ inwestycji	Przebudowa istniejącego odcinka			
Konstrukcja nawierzchni	4 cm SMA			
odcinka oraz zastosowane	8 cm AC WMS 16 (20/30 4,6%)			
materiały	14 cm AC WMS 16 (20/30 4,6%)			
Dokument w oparciu o który	WT-2 2008			
zaprojektowano mieszanki				
AC WMS				
Ocena zniszczeń w 2012 r.	brak uszkodzeń odcinka			

7.4.2.4. Droga Krajowa nr 5 odcinek Kostomłoty – Strzegom

Odcinek oddany do ruchu w 2010 roku. W bardzo dobrym stanie technicznym. Nie stwierdzono uszkodzeń nawierzchni.

|--|

Kilometraż:	79+850 – 85+000
Długość odcinka:	5,15 km
Obciążenie ruchem:	KR5 – KR6
Przekrój odcinka:	2x2

Rok wykonania odcinka:	2011				
Wykonawca odcinka:	Heilit Woerner				
Typ inwestycji	Budowa nowej drogi od podstaw				
Konstrukcja nawierzchni	4 cm SMA				
odcinka oraz zastosowane	8 cm AC WMS 16 (25/55-60 4,9%)				
materiały	10 cm AC WMS 16 (20/30 5,0%)				
Dokument w oparciu o który	WT-2 2008				
zaprojektowano mieszanki					
AC WMS					
Ocena zniszczeń w 2012 r.	brak istotnych uszkodzeń odcinka, miejscami				
	rozwarte szwy rodocze				

Odcinek oddany do ruchu w 2011 roku w bardzo dobrym stanie technicznym. Jedynym mankamentem odcinka były połączenia z istniejącymi drogami co widać na rysunku 7.9. Pozostałe szwy robocze utrzymane w dobrym stanie i zamknięte. Nie stwierdzono innych uszkodzeń odcinka.

Na rysunkach 7.9-7.11 przedstawiono stan nawierzchni odcinka DK35 w roku 2012

Rysunek 7.9 Stan nawierzchni odcinka DK35 oceniony w roku 2012 (początek odcinka)

Rysunek 7.10 Stan nawierzchni odcinka DK35 oceniony w roku 2012

Rysunek 7.11 Stan nawierzchni odcinka DK35 oceniony w roku 2012 (zamknięty szew roboczy)

Kilometraż:	1+705 – 7+810				
Długość odcinka:	6,105 km				
Obciążenie ruchem:	KR5 – KR6				
Przekrój odcinka:	1x2				
Rok wykonania odcinka:	2011				
Wykonawca odcinka:	Eurovia				
Typ inwestycji	Przebudowa istniejącego odcinka				
Konstrukcja nawierzchni	4 cm SMA				
odcinka oraz zastosowane	8 cm AC WMS 16 (25/55-60 5,1%)				
materiały	15 cm AC WMS 16 (20/30 5,1%)				
Dokument w oparciu o który	WT-2 2008				
zaprojektowano mieszanki					
AC WMS					
Ocena zniszczeń w 2012 r.	4 spękania poprzeczne o niskiej szkodliwości				
	Otwarte podłużne szwy robocze				

7.4.2.6.	Droga Krajowa nr	46 odcinek	Kłodzko – Podzamek
----------	------------------	------------	--------------------

Odcinek oddany do ruchu w 2011 roku. Położony na terenie podgórskim z dużymi pochyleniami podłużnymi. Stwierdzono spękania poprzeczne o bardzo małym rozwarciu (<1mm) w ostatnim kilometrze odcinka. Zauważono także otwarte podłużne szwy robocze. Na odcinku nie stwierdzono kolein.

Na rysunkach 7.12-7.13 przedstawiono stan nawierzchni odcinka DK 46 w roku 2012

Rysunek 7.12 Stan nawierzchni odcinka DK46 oceniony w roku 2012 (spękanie poprzeczne)

Rysunek 7.13 Stan nawierzchni odcinka DK 46 oceniony w roku 2012

7.4.2.7.	Droga	Krajowa	nr	46	odcinek	Podzamek	-	granica
województwa								

Kilometraż:	7+810 – 20+894
Długość odcinka:	13,084 km
Obciążenie ruchem:	KR5 – KR6
Przekrój odcinka:	1x2
Rok wykonania odcinka:	2010
Wykonawca odcinka:	PRDIM Kędzierzyn-Koźle
Typ inwestycji	Przebudowa istniejącego odcinka
Konstrukcja nawierzchni	4 cm SMA
odcinka oraz zastosowane	8 cm AC WMS 16 (20/30 4,6%)
materiały	15 cm AC WMS 16 (20/30 4,6%)
Dokument w oparciu o który	WT-2 2008
zaprojektowano mieszanki	
AC WMS	

Ocena zniszczeń w 2012 r.	- 15 spękań poprzecznych o niskiej lub średniej
	szkodliwości (możliwe złe określenie zakresu
	przebudowy odcinka w ankietach, wyraźny podział
	odcinka na 3 odcinki jednorodne)
	- spękania podłużne długości ~100 m
	- uszkodzenia krawędziowe
	- uszkodzenia w śladzie kół
	- koleiny (występują na odcinkach o dużym
	pochyleniu podłużnym):
	a) długość ~5 m; głębokość 12 mm (str P)
	b) długość ~10m; głębokość 5 mm (str P) i 17 mm (str
	L)

Odcinek oddany do ruchu w 2010 roku. Położony na terenie podgórskim z dużym pochyleniami podłużnymi. Najprawdopodobniej podany został zły kilometraż remontu odcinka, ze względu na mocno zróżnicowany stan nawierzchni. Odcinek podzielono na 3 odcinki jednorodne.

Odcinek A: najprawdopodobniej rzeczywisty obszar remontu. Nawierzchnia jednorodna pod względem struktury. Zauważono 7 spękań poprzecznych o małym rozwarciu (<1mm). Spękania występują w dużym odstępie od siebie, najczęściej na obszarze zabudowanym. Na odcinku stwierdzono koleiny o dużej głębokości odcinkach o dużym pochyleniu poprzecznym (na końcu podjazdu – głębokość 17 mm w jednym śladzie i 5 mm w drugim śladzie koła; na końcu zjazdu na terenie zabudowanym – głębokość 12 mm). Dodatkowo przy zjeździe na terenie zabudowanym zauważono mechaniczne uszkodzenia warstwy ścieralnej oraz uszkodzenia krawędzi nawierzchni)

Odcinek B: krótki odcinek drogi ze spękaniami poprzecznymi o średnim rozwarciu i częstotliwości co około 100m.

Odcinek C: odcinek o dobrym stanie nawierzchni z 1 spękaniem poprzecznym. Odcinek na obszarze miasta Złoty Stok.

Na rysunkach 7.14-7.18 przedstawiono stan nawierzchni odcinka DK46 w roku 2012

Rysunek 7.14 Stan nawierzchni odcinka DK46 oceniony w roku 2012 (spękanie poprzeczne; pierwszy odcinek jednorodny)

Rysunek 7.15 Stan nawierzchni odcinka DK46 oceniony w roku 2012 (spękanie poprzeczne; drugi odcinek jednorodny)

Rysunek 7.16 Stan nawierzchni odcinka DK46 oceniony w roku 2012 (spękanie poprzeczne; trzeci odcinek jednorodny)

Rysunek 7.17 Stan nawierzchni odcinka DK46 oceniony w roku 2012 (uszkodzenia

powierzchniowe; pierwszy odcinek jednorodny)

Rysunek 7.18 Stan nawierzchni odcinka DK46 oceniony w roku 2012 (koleina – łata długości 2 m; pierwszy odcinek jednorodny)

7.4.3. Województwo Opolskie

7.4.3.1. Droga Krajowa nr 41 odcinek Prudnik – granica państwa

Kilometraż:	29+520 - 33+270
Długość odcinka:	3,75 km
Obciążenie ruchem:	KR4
Przekrój odcinka:	1x2
Rok wykonania odcinka:	2011
Wykonawca odcinka:	PRDIM Kędzierzyn-Koźle
Typ inwestycji	Przebudowa istniejącego odcinka
Konstrukcja nawierzchni	4 cm SMA
odcinka oraz zastosowane	9 cm AC WMS 16W (20/30 4,6%)
materiały	10 cm AC WMS 16P (20/30 4,6%)
	20 cm KŁSM
	20 cm GSC
	30 cm w. mrozoochronna (żwir/pospółka)
Dokument w oparciu o który	WT-2 2008
zaprojektowano mieszanki	
AC WMS	
Ocena zniszczeń w 2012 r.	brak uszkodzeń odcinka

Odcinek oddany do ruchu w roku 2011. Odcinek w bardzo dobrym stanie technicznym. Nie stwierdzono uszkodzeń nawierzchni.

Na rysunku 7.19 przedstawiono stan nawierzchni odcinka DK 41 w roku 2012

Rysunek 7.19 Stan nawierzchni odcinka DK41 oceniony w roku 2012

Kilometraż:	89+650 - 94+100
Długość odcinka:	4,45 km
Obciążenie ruchem:	KR4
Przekrój odcinka:	1x2
Rok wykonania odcinka:	2011
Wykonawca odcinka:	PRDIM Kędzierzyn-Koźle
Typ inwestycji	Przebudowa istniejącego odcinka
Konstrukcja nawierzchni	4 cm SMA
odcinka oraz zastosowane	12 cm AC WMS 20 (20/30 4,6%)
materiały	geosiatka poliestrowa 70/70 kN/m (km 92+917,56 -
	94+100)
	30 cm KŁ (stara podbudowa)
	na poszerzeniach:
	15 cm KŁSM 0/31,5
	15 cm KŁSM 063
	warstwa mrozoochronna
Dokument w oparciu o który	WT-2 2008
zaprojektowano mieszanki	
AC WMS	
Ocena zniszczeń w 2012 r.	brak uszkodzeń odcinka

7.4.3.2. Droga Krajowa nr 45 odcinek Boguszyce – Winów

Odcinek oddany do ruchu w roku 2011. Odcinek w bardzo dobrym stanie technicznym. Nie stwierdzono uszkodzeń nawierzchni.

Na rysunku 7.20 przedstawiono stan nawierzchni odcinka DK 45 w roku 2012

Rysunek 7.20 Stan nawierzchni odcinka DK45 oceniony w roku 2012 (spękanie poprzeczne)

7.4.3.3. Dro	ga Powiatowa	nr 2002O ul.	Piastowska w	^v Opolu
--------------	--------------	--------------	--------------	--------------------

Kilometraż:	bd
Długość odcinka:	0,8 km
Obciążenie ruchem:	KR4
Przekrój odcinka:	1x2
Rok wykonania odcinka:	2010
Wykonawca odcinka:	ADAC-LEWAR S.C. + PRDIM Kędzierzyn-Koźle
Typ inwestycji	Przebudowa istniejącego odcinka
Konstrukcja nawierzchni	4 cm SMA
odcinka oraz zastosowane	8 cm BA 0/20 (35/50 4,3%)
materiały	10 cm BA 0/31,5 (35/50 4,3%)
Dokument w oparciu o który	ZW-WMS 2002
zaprojektowano mieszanki	
AC WMS	
Ocena zniszczeń w 2012 r.	1 spękanie poprzeczne o niskiej szkodliwości
	uszkodzenia w obrębie studni

Odcinek oddany do ruchu w 2010 roku. Odcinek miejski z intensywnym i powolnym ruchem samochodów osobowych oraz autobusów miejskich, położony w centrum Opola. Stwierdzono 1 spękanie poprzeczne o małym rozwarciu na połowie jezdni oraz uszkodzenia przy wpustach ulicznych. Nie stwierdzono kolein.

Na rysunkach 7.21-7.22 przedstawiono stan nawierzchni odcinka 2002O w roku 2012

Rysunek 7.21 Stan nawierzchni odcinka 2002O oceniony w roku 2012 (uszkodzenia w obrębie studni)

Rysunek 7.22 Stan nawierzchni odcinka 2002O oceniony w roku 2012 (spękanie poprzeczne)

7.4.4. Województwo Podlaskie

7.4.4.1. Droga Ekspresowa nr 8 odcinek Jeżewo – Białystok

Kilometraż:	614+850 – 639+365
Długość odcinka:	24,515 km
Obciążenie ruchem:	KR6
Przekrój odcinka:	2x2
Rok wykonania odcinka:	2012 (w czasie oceny odcinek znajdował się w
	realizacji)
Wykonawca odcinka:	Mota Engil, Strabag, Transprojekt Gdańsk
Typ inwestycji	Budowa nowej drogi od podstaw
Konstrukcja nawierzchni	4 cm SMA
odcinka oraz zastosowane	8 cm AC WMS 16 (20/30)
materiały	16 cm AC WMS 16 (20/30)
	23 cm KŁSM
Dokument w oparciu o który	brak danych

zaprojektowano mieszanki AC WMS	
Ocena zniszczeń w 2012 r.	liczne spękania poprzeczne na jezdni głównej i na jezdniach tymczasowych powstałe w warstwie podbudowy i wiążącej w trakcie realizacji inwestycji

W czasie oceny stanu nawierzchni, odcinek znajdował się w budowie. Intensywny ruch pojazdów (z przewagą samochodów ciężarowych z przyczepami) odbywał się zarówno po drogach tymczasowych jak i po warstwie wiążącej/podbudowie jezdni głównych. Zauważono liczne spękania poprzeczne o charakterze typowo niskotemperaturowym (spękania poprzeczne nieregularne oraz otwarte poprzeczne szwy robocze). Spękania występowały ze zróżnicowaną częstotliwością (od odległości 20m do ponad 500m). Stwierdzono spękania w osi pięciu kolejnych przykanalików rozpoczynające się na studniach ulicznych. W niektórych miejscach zauważono uszkodzenia powierzchniowe nawierzchni. Jesienią w roku 2012 odcinek oddano do użytkowania. Brak informacji czy była wykonywana naprawa spękań przed położeniem warstwy ścieralnej.

Na rysunkach 7.23-7.25 przedstawiono stan nawierzchni odcinka S8 w roku 2012

Rysunek 7.23 Stan nawierzchni odcinka S8 oceniony w roku 2012 (spękanie poprzeczne o średnim rozwarciu)

Rysunek 7.24 Stan nawierzchni odcinka S8 oceniony w roku 2012 (otwarty szew roboczy)

Rysunek 7.25 Stan nawierzchni odcinka S8 oceniony w roku 2012

Kilometraż:	575+550 – 586+620
Długość odcinka:	11,07 km
Obciążenie ruchem:	bd
Przekrój odcinka:	2x2
Rok wykonania odcinka:	2012 (w czasie oceny odcinek znajdował się w
	realizacji)
Wykonawca odcinka:	Blifinger Berger
Typ inwestycji	Budowa nowej drogi od podstaw
Konstrukcja nawierzchni	brak danych
odcinka oraz zastosowane	
materiały	
Dokument w oparciu o który	brak danych
zaprojektowano mieszanki	
ACWMS	

7.4.4.2. Droga Ekspresowa nr 8 odcinek Obwodnica Zambrowa

Ocena zniszczeń w 2012 r. brak uszkodzeń odcinka

W czasie wykonywania oceny stanu nawierzchni na odcinku były wykonywane wykończeniowe prace budowlane. Odcinek w bardzo dobrym stanie technicznym. Nie stwierdzono uszkodzeń odcinka. Odcinek oddany do ruchu w roku 2012.

Na rysunkach 7.26-7.27 przedstawiono stan nawierzchni odcinka S8 w roku 2012

Rysunek 7.26 Stan nawierzchni odcinka S8 oceniony w roku 2012

Rysunek 7.27 Stan nawierzchni odcinka S8 oceniony w roku 2012

Kilometraż:	717+982 – 723+236
Długość odcinka:	5,254 km
Obciążenie ruchem:	KR6
Przekrój odcinka:	1x2
Rok wykonania odcinka:	2005
Wykonawca odcinka:	TILTRA
Typ inwestycji	Przebudowa istniejącego odcinka (z poszerzeniem)
Konstrukcja nawierzchni	4 cm SMA

7.4.4.3. Droga Krajowa nr 8 odcinek Sztabin – Kolnica

odcinka oraz zastosowane materiały	6/8 cm AC WMS 20 (Orbiton 30B 4,8%) 7/9 cm AC WMS 20 (Orbiton 30B 4,7%) > 6 cm AC 20 (w. wyrównawczo-wzmacniająca) 20 cm MCE (tylko na poszerzeniach)
Dokument w oparciu o który zaprojektowano mieszanki AC WMS	ZW-WMS 2002
Ocena zniszczeń w 2012 r. (GDDKiA 06.03.2012 r.)	29 spękań poprzecznych spękania podłużne spękania siatkowe
Ocena zniszczeń w 2012 r. (Politechnika Gdańska)	31 spękań poprzeczne (głównie na jednym pasie) otwarte podłużne szwy robocze lokalne zapadnięcia lokalne wykruszenia mieszanki przy spękaniach

Najstarszy odcinek położony w północno-wschodniej części Polski. Oddany do ruchu w 2005 roku. Odcinek wykonany jako przebudowa istniejącej jezdni z wykonaniem poszerzeń przy zastosowaniu technologii MCE. Ze względu na tranzytowy charakter drogi na odcinku występował intensywny ruch samochodów ciężarowych z przyczepami. Zauważono 31 spękań poprzecznych występujących na szerokości 1 pasa ruchu o dużym rozwarciu przy krawędzi jezdni. Na części spękań pojawiły się wykruszenia nawierzchni. Spękania występowały głównie na jednym pasie ruchu. Zauważono także otwarte podłużne szwy robocze na znacznych długościach oraz spękania podłużne odsunięte około 30-50 cm od osi drogi. Nie stwierdzono wystepowania Występowały kolein. lokalne zapadniecia uszkodzenia i powierzchniowe nawierzchni.

Na rysunkach 7.28-7.32 przedstawiono stan nawierzchni odcinka DK 8 w roku 2012

Rysunek 7.28 Stan nawierzchni odcinka DK8 oceniony w roku 2012 (spękanie poprzeczne o średniej szkodliwości)

Rysunek 7.29 Stan nawierzchni odcinka DK8 oceniony w roku 2012 (spękanie poprzeczne z lokalnymi wykruszeniami, duża szkodliwość)

Rysunek 7.30 Stan nawierzchni odcinka DK8 oceniony w roku 2012 (uszkodzenia powierzchniowe)

Rysunek 7.31 Stan nawierzchni odcinka DK8 oceniony w roku 2012 (spękania

podłużne o średniej szkodliwości)

Rysunek 7.32 Stan nawierzchni odcinka DK8 oceniony w roku 2012, zalane spękania podłużne

Kilometraż:	648+117 – 654+548
Długość odcinka:	6,431 km
Obciążenie ruchem:	KR6
Przekrój odcinka:	1x2 i 2x2
Rok wykonania odcinka:	2009
Wykonawca odcinka:	Strabag
Typ inwestycji	Budowa nowej drogi od podstaw
Konstrukcja nawierzchni	4 cm SMA
odcinka oraz zastosowane	8 cm AC WMS 16 (20/30 4,8%)
materiały	17 cm AC WMS 16 (20/30 4,8%)
Dokument w oparciu o który	ZW-WMS 2007
zaprojektowano mieszanki	
AC WMS	
Ocena zniszczeń w 2011 r.	35 spękań poprzecznych
(GDDKiA)	spękania siatkowe
Ocena zniszczeń w 2012 r.	66 spękań poprzecznych
(GDDKiA)	spękania podłużne
	spękania siatkowe
Ocena zniszczeń w 2012 r.	57 spękań poprzecznych
(Politechnika Gdańska)	26 szwów spękań poprzecznych naprawionych (część
	otwarta)
	otwarte poprzeczne szwy robocze
	otwarte podłużne szwy robocze

7.4.4.4. Droga Krajowa nr 8 odcinek Białystok – Katrynka

Odcinek oddany do ruchu w 2009 roku. Ze względu na tranzytowy charakter odcinka występował intensywny ruch pojazdów ciężarowych z przyczepami. Na odcinku stwierdzono 57 spękań poprzecznych o różnej intensywności oraz o częstotliwości od jednego spękania na kilometr do 10 spękań na kilometr. Część spękań poprzecznych była naprawiana, stąd możliwa inna klasyfikacja spękań

poprzecznych. Obie jezdnie drogi DK 8 spękane równomiernie. Stwierdzono otwarte podłużne szwy robocze oraz spękania podłużne. Nie stwierdzono kolein.

Na rysunkach 7.33-7.38 przedstawiono stan nawierzchni odcinka DK 8 w roku 2012

Rysunek 7.33 Stan nawierzchni odcinka DK8 oceniony w roku 2012 (spękanie poprzeczne o niskiej szkodliwości)

Rysunek 7.34 Stan nawierzchni odcinka DK8 oceniony w roku 2012 (spękania poprzeczne i naprawione spękania poprzeczne/szwy robocze)

Rysunek 7.35 Stan nawierzchni odcinka DK8 oceniony w roku 2012 (spękanie poprzeczne)

Rysunek 7.36 Stan nawierzchni odcinka DK8 oceniony w roku 2012 (spękanie podłużne)

Rysunek 7.37 Stan nawierzchni odcinka DK8 oceniony w roku 2012 (otwarte

naprawy spękań poprzecznych)

Rysunek 7.38 Stan nawierzchni odcinka DK8 oceniony w roku 2012 (stan nawierzchni w rejonie zatok autobusowych)

Kilometraż:	brak danych
Długość odcinka:	5,0 km
Obciążenie ruchem:	KR6
Przekrój odcinka:	2x2
Rok wykonania odcinka:	2011
Wykonawca odcinka:	Strabag
Typ inwestycji	Budowa nowej drogi od podstaw
Konstrukcja nawierzchni	brak danych
odcinka oraz zastosowane	
materiały	
Dokument w oparciu o który	brak danych
zaprojektowano mieszanki	
AC WMS	
Ocena zniszczeń w 2012 r.	1 spękanie poprzeczne

7.4.4.5. Droga Krajowa nr 19 odcinek Obwodnica Wasilkowa

Odcinek oddany do ruchu w 2011 roku. Odcinek w dobrym stanie technicznym. Jedynym uszkodzeniem było 1 spękanie poprzeczne. Innych uszkodzeń nawierzchni nie stwierdzono.

Na rysunku 7.39 przedstawiono stan nawierzchni odcinka DK 19 w roku 2012

Rysunek 7.39 Stan nawierzchni odcinka DK19 oceniony w roku 2012 (spękanie poprzeczne)

7.4.5. Województwo Pomorskie

7.4.5.1. Droga Wojewódzka nr 468 odcinek al. Zwycięstwa w Gdańsku

Kilometraż:	brak danych
Długość odcinka:	~1,5 km
Obciążenie ruchem:	KR 5
Przekrój odcinka:	1x3 (jedna jezdnia)
Rok wykonania odcinka:	2009
Wykonawca odcinka:	TPA / STRABAG
Typ inwestycji	Przebudowa odcinka
Konstrukcja nawierzchni	4 cm SMA
odcinka oraz zastosowane	8 cm AC WMS 16 (20/30 4,8%)
materiały	warstwa przeciwspękaniowa
	5 cm BA 16 (w. wyrównawcza)
	5 cm istniejące warstwy asfaltowe po frezowaniu
	21 cm KŁSM lub 16 cm BC
Dokument w oparciu o który	ZW-WMS 2007
zaprojektowano mieszanki	
AC WMS	
Ocena zniszczeń w 2011 r.	brak uszkodzeń odcinka
Ocena zniszczeń w 2012 r.	brak uszkodzeń odcinka

Droga oddana do ruchu w 2009 roku. Ze względu na położenie w głównej osi tranzytowej trójmiasta odbywa się na niej intensywny ruch samochodów osobowych. Na odcinku stwierdzono jedynie uszkodzenia powierzchniowe warstwy ścieralnej (uszkodzenia przy wpustach ulicznych, plamy na powierzchni warstwy ścieralnej przed skrzyżowaniem). Nie stwierdzono kolein. Ustalono jedno potencjalne miejsce, gdzie może wystąpić spękanie poprzeczne (zauważono wyraźny ślad).

Na rysunkach 7.40-7.41 przedstawiono stan nawierzchni odcinka DW 468 w roku 2012

Rysunek 7.40 Stan nawierzchni odcinka DW468 oceniony w roku 2012 (lokalizacja potencjalnego spękania poprzecznego)

Rysunek 7.41 Stan nawierzchni odcinka DW468 oceniony w roku 2011

7.4.5.2.	Droga	Krajowa	nr	7	odcinek	ul.	Podwale	Przedmiejskie	W
	Gdańs	ku							

Kilometraż:	brak danych
Długość odcinka:	~1,5 km
Obciążenie ruchem:	KR4
Przekrój odcinka:	1x3 i 1x4 (jedna jezdnia)
Rok wykonania odcinka:	2009
Wykonawca odcinka:	MTM SA
Typ inwestycji	Przebudowa istniejącego odcinka
Konstrukcja nawierzchni	4 cm SMA

odcinka oraz zastosowane materiały	8 cm AC WMS 16 (20/30 4,9%) 8 cm AC WMS 16 (20/30 4,9%)
	kompozyt przeciwspękaniowy
	istniejąca konstrukcja
Dokument w oparciu o który	ZW-WMS 2007
zaprojektowano mieszanki	
AC WMS	
Ocena zniszczeń w 2011 r.	brak uszkodzeń odcinka
Ocena zniszczeń w 2012 r.	spękania poprzeczne na połączeniu z istniejącymi odcinkami
	spękania podłużne (~2 m)
	uszkodzenia powierzchniowe
	uszkodzenia w obrębie studni deszczowych

Odcinek oddany do ruchu w 2009 roku. Droga miejska o charakterze tranzytowym z intensywnym i powolnym ruchem pojazdów ciężarowych z przyczepami. Stwierdzono intensywne spękania poprzeczne w miejscach połączenia ze starą nawierzchnią, najprawdopodobniej o charakterze spękań odbitych. Zauważono liczne uszkodzenia powierzchniowe w obrębie wpustów ulicznych. Stwierdzono spękanie podłużne o długości około 2 m w rejonie głębokich wykopów (>5 metrów). Nie stwierdzono kolein.

Na rysunkach 7.42-7.45 przedstawiono stan nawierzchni odcinka DK 7 w roku 2012

Rysunek 7.42 Stan nawierzchni odcinka DK7 oceniony w roku 2012 (spękania poprzeczne na połączeniu z istniejącą nawierzchnią)

Rysunek 7.43 Stan nawierzchni odcinka DK 7 oceniony w roku 2012 (spękania podłużne)

Rysunek 7.44 Stan nawierzchni odcinka DK 7 oceniony w roku 2012 (uszkodzenia powierzchniowe w obrębie studni)

Rysunek 7.45 Stan nawierzchni odcinka DK 7 oceniony w roku 2011

7.4.6. Województwo Wielkopolskie

7.4.6.1. Autostrada nr 2 odcinek Komorniki – Krzesiny

Kilometraż:	206+800 - 215+872
Długość odcinka:	9 km
Obciążenie ruchem:	KR 6
Przekrój odcinka:	dwie jezdnie po dwa pasy ruchu
Rok wykonania odcinka:	2001-2003
Wykonawca odcinka:	b/d producent mieszanek mineralno-asfaltowych- firma Collas
Typ inwestycji	nowa droga
Konstrukcja nawierzchni	warstwa ścieralna 3 cm Ruflex 0/12,8
odcinka oraz zastosowane	warstwa wiążąca 8 cm Colbase
materiały	podbudowa asfaltowa BA 0/25
	podbudowa z KŁSM
Dokument w oparciu o który	b/d
zaprojektowano mieszanki	
AC WMS	
Ocena uszkodzeń w 2012 r.	stan bardzo dobry (równość/spękania), koleina stan zadowalający (na podstawie obserwacji SOSN)

Autostrada A2 na odcinku Komorniki - Krzesiny została oddana w 2003 r. Na całym 9 km odcinku autostrady nie zaobserwowano istotnych uszkodzeń nawierzchni. Odcinek oceniony w ramach SOSN, równość podłużna i spękania stan bardzo dobry (ocena A), koleiny stan zadowalający (ocena B) na prawych pasach ruchu. Ogólny stan techniczny nawierzchni można ocenić jako bardzo dobry.

Na rysunku 7.46 przedstawiono stan nawierzchni odcinka A2 km 206+800 - 215+872 w roku 2012

Rysunek 7.46 Widok nawierzchni autostrady A2 na odcinku Komorniki - Krzesiny, dobry lub bardzo dobry stan techniczny na całym odcinku drogi

Kilometraż:	107+900 - 158+300
Długość odcinka:	50,4 km
Obciążenie ruchem:	KR6
Przekrój odcinka:	dwie jezdnie po dwa pasy
Rok wykonania odcinka:	2003
Wykonawca odcinka:	b/d
Typ inwestycji	nowa droga
Konstrukcja nawierzchni	warstwa ścieralna SMA 0/11
odcinka oraz zastosowane	podbudowa i warstwa wiążąca WMS 0/16
materiały	
Dokument w oparciu o który	b/d
zaprojektowano mieszanki	
AC WMS	
Ocena uszkodzeń w 2012 r.	brak widocznych uszkodzeń

7.4.6.2. A	Autostrada nr	² 2 odcinek	Komorniki – I	Nowy Tom	yśl
------------	---------------	------------------------	---------------	----------	-----

Autostrada A2 na odcinku Komorniki - Nowy Tomyśl została wybudowana w 2003 r. Na całym 50 km odcinku autostrady nie zaobserwowano istotnych uszkodzeń nawierzchni. Ogólny stan techniczny nawierzchni można ocenić jako bardzo dobry.

Na rysunku 7.47 przedstawiono stan nawierzchni odcinka A2 km 107+900 - 158+300 w roku 2012.

Rysunek 7.47 Widok nawierzchni autostrady A2 na odcinku Komorniki - Nowy Tomyśl, brak uszkodzeń na całym odcinku

7.4.6.3. Autostrada nr 2 odcir	nek Konin – Koło – Dąbie
--------------------------------	--------------------------

Kilometraż:	257+560 - 303+145
Długość odcinka:	45,6 km
Obciążenie ruchem:	KR6
Przekrój odcinka:	dwie jezdnie po dwa pasy

Rok wykonania odcinka:	2005
Wykonawca odcinka:	Strabag, Mota Enginering, Jacobs GIBB
Typ inwestycji	nowa droga
Konstrukcja nawierzchni odcinka oraz zastosowane materiały	warstwa ścieralna 4 cm SMA 0/11 80B warstwa wiążąca 9 cm WMS 0/20 35/50 + chemcrete podbudowa asfaltowa 13 cm WMS 0/20 20/30 13 cm WMS 0/16 20/30
Dokument w oparciu o który zaprojektowano mieszanki AC WMS	b/d
Ocena uszkodzeń w 2012 r.	Stan bardzo dobry

Autostrada A2 na Konin - Koło - Dąbie została wybudowana w 2005 r. Na całym 45 km odcinku autostrady nie zaobserwowano istotnych uszkodzeń nawierzchni. Ogólny stan techniczny nawierzchni można ocenić jako bardzo dobry.

Na rysunku 7.48 przedstawiono stan nawierzchni odcinka A2 km 257+560 - 303+145 w roku 2012.

Rysunek 7.48 Widok nawierzchni autostrady A2 na odcinku Konin - Koło- Nowe Dąbie, brak istotnych uszkodzeń nawierzchni

7.4.6.4. Droga Ekspresowa nr 5 odcinek Wschodnia Obwodnica Poznania

0+000 - 14+475
14,5 km
KR6
Dwujezdniowy, po dwa pasy w każdym kierunku
Rok wykonania odcinka:

Wykonawca odcinka:
Typ inwestycji
Konstrukcja nawierzchni
odcinka oraz zastosowane
materiały
Dokument w oparciu o który
zaprojektowano mieszanki
AC WMS
Ocena uszkodzeń w 2012 r.

Kilometraż:	14+475 - 34+615
Długość odcinka:	20,1
Obciążenie ruchem:	KR6
Przekrój odcinka:	Dwujezdniowy, po dwa pasy w każdym kierunku
Rok wykonania odcinka:	2010-2012
Wykonawca odcinka:	Eurovia
Typ inwestycji	nowa droga
Konstrukcja nawierzchni	warstwa ścieralna 4 cm SMA 11
odcinka oraz zastosowane	warstwa wiążąca 8 cm AC WMS 16 (PMB 25/55-60,
materiały	odcinki bazalt lub bazalt-wapień)
	podbudowa asfaltowa 14 cm EME 16 (2 warstwy,
	odcinki na kruszywie bazaltowym, odcinki na
	kruszywie bazaltowo-wapiennym)
Dokument w oparciu o który	WT-2
zaprojektowano mieszanki	
AC WMS	
Ocena uszkodzeń w 2012 r.	brak istotnych uszkodzeń, stan techniczny bardzo
	dobry

Droga S5 na odcinku od 0 do 34+615 jest drogą nową, oddaną do użytkowania w roku 2012. Generalnym wykonawcą odcinka były firmy Eurovia oraz konsorcjum firm DRAGADOS/Colas. Droga na całej swojej długości jest w stanie bardzo dobrym, nie stwierdzono uszkodzeń nawierzchni.

Na rysunku 7.49 przedstawiono stan nawierzchni odcinka S5 km 0+000 - 34+615 w roku 2012.

Rysunek 7.49 Stan nawierzchni drogi S5, km 34+300

7.4.6.5. Droga Ekspresowa nr 5 odcinek Kaczkowo – Korzeńsko

Odcinek nie podlegał ocenie w 2012 roku.

7.4.6.6. Droga Ekspresowa nr 11 odcinek Zachodnia Obwodnica Poznania

Odcinek nie podlegał ocenie w 2012 roku.

7.4.6.7. Droga Ekspresowa nr 11 odcinek Poznań – Kurnik

Kilometraż:	288+720 - 297+825
Długość odcinka:	11 km
Obciążenie ruchem:	KR5-6
Przekrój odcinka:	dwie jezdnie po dwa pasy
Rok wykonania odcinka:	2006/2009
Wykonawca odcinka:	Skanska / Colas
Typ inwestycji	nowa droga
Konstrukcja nawierzchni	warstwa ścieralna 4 cm Ruflex0/12,8 (Colflex 80B) lub
odcinka oraz zastosowane materiały	3 cm Nanosoft 0/5 (Colflex 80C) + warstwa wiażaca 7 cm EME0/16 (20/30)+
	podbudowa asfaltowa 7+8 cm EME0/16 (20/30)+KŁSM
Dokument w oparciu o który	b/d
zaprojektowano mieszanki	
AC WMS	
Ocena uszkodzeń w 2012 r.	brak istotnych uszkodzeń, stan techniczny bardzo dobry

Droga S11 na odcinku od km 288+700 do 297+825 została wybudowana w latach 2006/2009 przez firmy Colas i Skanska. Nawierzchnia jezdni na całym odcinku jest w stanie bardzo dobrym, nie stwierdzono ani spękań, ani kolein.

Na rysunku 7.50 przedstawiono stan nawierzchni odcinka S11 km 288+720 - 297+825w roku 2012.

Rysunek 7.50 Widok nawierzchni na S11 na odcinku Poznań - Kurnik, stan nawierzchni bardzo dobry

7.4.6.8. Droga Ekspresowa nr 11 odcinek Obwodnica Ostrowa Wielkopolskiego

Kilometraż:	393+900 - 400+000
Długość odcinka:	6,1 km
Obciążenie ruchem:	KR 5
Przekrój odcinka:	na większości długości odcinka przekrój
	jednojezdniowy dwupasowy, częściowo dwie jezdnie
	po dwa pasy
Rok wykonania odcinka:	2009
Wykonawca odcinka:	b/d
Typ inwestycji	b/d
Konstrukcja nawierzchni	4 cm SMA0/11 (30B) + 9 cm BA 0/20 (35/50
odcinka oraz zastosowane	+chemcrete) + 14 cm BA 0/25 (35/50) + KŁSM
materiały	
Dokument w oparciu o który	b/d
zaprojektowano mieszanki	
AC WMS	
Ocena uszkodzeń w 2012 r.	Stan bardzo dobry

Na rysunku 7.51 przedstawiono stan nawierzchni odcinka S11 km 393+900 - 400+000 w roku 2012.

Rysunek 7.51 Widok nawierzchni na drodze S11 Obwodnica Ostrowa Wielkopolskiego. Bardzo dobry stan techniczny na całym odcinku drogi.

Kilometraż:	195+100 - 197+800
Długość odcinka:	2,7 km
Obciążenie ruchem:	KR5-6
Przekrój odcinka:	jednojezdniowy wypasowy, wyspa dzieląca oba pasy na większości odcinka, ruch skanalizowany
Rok wykonania odcinka:	2003-2004
Wykonawca odcinka:	b/d
Typ inwestycji	przebudowa istniejące jezdni
Konstrukcja nawierzchni odcinka oraz zastosowane materiały	warstwa ścieralna 3 cm Colsoft 0/8 warstwa wiążąca 8 cm BA 0/20 podbudowa asfaltowa 10 cm WMS 0/16 (20/30) podbudowa z KŁSM/KŁScem
Dokument w oparciu o który zaprojektowano mieszanki AC WMS	b/d
Ocena uszkodzeń w 2012 r.	Spękania poprzeczne Koleina na całej długości odcinka, na pasach w obu kierunkach ruchu. Głębokośc koleiny zmienna od 10 mm do 25 mm

7.4.6.9. Droga Krajowa nr 5 odcinek Obwodnica Poznania

Odcinek DK5 km 195+100 do 197+800 przebiega przez teren miejski. Na odcinku stwierdzono koleiny o głębokości ponad 1,5 cm. Zaobserwowano też liczne spękania poprzeczne. Część spękań ma regularny kształt. Większość odcinka wykonano w przekroju jednojezdniowym z krawężnikiem po obu stronach jezdni. Liczba pasów zmienia się w związku z licznymi skrzyżowaniami. Ruch na odcinku jest powolny i

skanalizowany. Na długości odcinka zlokalizowanych jest kilka skrzyżowań oraz przejść dla pieszych z sygnalizacją świetlną, przez co wymuszone są częste zatrzymania pojazdów.

Na rysunkach 7.52-7.54 przedstawiono stan nawierzchni odcinka DK5 km 195+100 - 197+800 w roku 2012.

Rysunek 7.52 Nawierzchnia przed sygnalizacją świetlną, widoczne spękanie poprzeczne oraz koleina

Rysunek 7.53 Spękania w nawierzchni o regularnym przebiegu.

Rysunek 7.54 Koleina o głębokości 18 mm na odcinku drogi przed sygnalizacją świetlną

7.4.6.10. Droga Krajowa nr 15 odcinek Obwodnica Gniezna

Kilometraż:	0+000 - 6+260

Długość odcinka:	6,2 km
Obciążenie ruchem:	KR5
Przekrój odcinka:	jednojezdniowa dwupasowa
Rok wykonania odcinka:	2005
Wykonawca odcinka:	PRD Gniezno
Typ inwestycji	nowa droga
Konstrukcja nawierzchni	warstwa ścieralna 3 cm Rugosoft 0/8 (4 cm SMA 0/11
odcinka oraz zastosowane	5+400 - 6+200)
materiały	warstwa wiążąca 7 cm WMS 0/16 (20/30)
	podbudowa asfaltowa 7 cm WMS 0/16 (20/30)
Dokument w oparciu o który	b/d
zaprojektowano mieszanki	
AC WMS	
Ocena uszkodzeń w 2012 r.	Liczne łaty o różnej powierzchni.
	Brak kolein na całej długości,
	spękania poprzeczne (ok. 30 na długości odcinka,
	część spękań naprawiona)
	Na odcinku 4+000 do 5+000 nierówności podłużne
	trasy, 10 spękań poprzecznych, 5 obszarów z
	spękaniami siatkowymi oraz 14 łat

Obwodnica Gniezna DK15 została wybudowana w 2005 roku przez PRD Gniezno. Na km 4+000 do 5+000 trasa jest w znacznie gorszym stanie technicznym niż na pozostałych odcinkach. Na odcinku tym zaobserwowano znaczne nierówności podłużne trasy, spękania poprzeczne w liczbie 10 oraz spękania siatkowe (5 obszarów), a także liczne łaty. Na całej długości trasy nie zaobserwowano kolein.

Na rysunkach 7.55-7.56 przedstawiono stan nawierzchni odcinka DK15 km 0+000 - 6+260 w roku 2012.

Rysunek 7.55 Obwodnica Gniezna km 4+700, widoczne nierówności podłużne trasy oraz łaty

Rysunek 7.56 Nieuszczelnione spękania poprzeczne na DK 15

7.4.6.11. Droga Krajowa nr 92 odcinek Grońsko

Kilometraż:	119+390 do 120+400
Długość odcinka:	1 km
Obciążenie ruchem:	KR5
Przekrój odcinka:	jednojezdniowa dwupasowa
Rok wykonania odcinka:	2002
Wykonawca odcinka:	b/d
Typ inwestycji	b/d
Konstrukcja nawierzchni odcinka oraz zastosowane materiały	warstwa ścieralna 3 cm MNU lub 4 cm SMA warstwa wiążąca/podbudowa 12 cm WMS
Dokument w oparciu o który zaprojektowano mieszanki AC WMS	b/d
Ocena uszkodzeń w 2012 r.	Brak znacznych uszkodzeń. 4 łaty w dobrym stanie, lokalnie otwarty podłużny szew roboczy

Na całym, jednokilometrowym odcinku drogi DK 92 nie stwierdzono istotnych uszkodzeń. Zaobserwowano 4 łaty. Stan techniczny odcinka można ocenić jako bardzo dobry.

Na rysunku 7.57 przedstawiono stan nawierzchni odcinka DK92 km 119+390 do 120+400 w roku 2012.

Rysunek 7.57 Widok nawierzchni drogi krajowej nr 92 km 120+300

Kilometraż:	206+000 - 214+000
Długość odcinka:	8 km
Obciążenie ruchem:	KR5
Przekrój odcinka:	dwujezdniowa po dwa pasy w każdym kierunku
Rok wykonania odcinka:	2003/2004
Wykonawca odcinka:	b/d, dostawca mieszanek mineralno-asfaltowych firma Colas
Typ inwestycji	b/d
Konstrukcja nawierzchni	warstwa ścieralna 3 cm Ruflex 0/12,8 (Colflex 80B) +
odcinka oraz zastosowane	warstwa wiążąca 7 cm Colbase (D50+0,6%polietylen)
materiały	
Dokument w oparciu o który	b/d
zaprojektowano mieszanki	
AC WMS	
Ocena uszkodzeń w 2012 r.	liczne spękania poprzeczne w obu kierunkach (łączna
	liczba 131 w obu kierunkach)
	koleiny przed skrzyżowaniami z sygnalizacją świetlną
	głębokości do 30 mm

7.4.6.12. Droga Krajowa nr 92 odcinek Iwno – Starczanowo

Nawierzchnia drogi krajowej nr 92 na odcinku od km 206+000 do 214+000 została wykonana w latach 2003/2004. Droga na całej długości przebiega w przekroju dwujezdniowym czteropasowym. Na całej długości odcinka, na obu jezdniach zaobserwowano liczne spękania poprzeczne. Indeks spękań wynosi 0,8 (spękań na

100 m). Bezpośrednio przed skrzyżowaniami z sygnalizacją świetlną widoczne są koleiny o głębokości do 50 mm na obu jezdniach. Na jezdni w kierunku lwna koleiny występują również na odcinkach między skrzyżowaniami

Na rysunkach 7.58-7.59 przedstawiono stan nawierzchni odcinka DK92 km 206+000 - 214+000 w roku 2012.

Rysunek 7.58 Widok nawierzchni drogi krajowej 92 w km 210+200, widoczne spękanie poprzeczne

Rysunek 7.59 Koleina o głębokości ok. 30 mm na prawym pasie jezdni w kierunku Iwna km 213+300

Kilometraż:	214+000 - 222+000
Długość odcinka:	8 km
Obciążenie ruchem:	KR5
Przekrój odcinka:	dwujezdniowa po dwa pasy w każdym kierunku
Rok wykonania odcinka:	2006
Wykonawca odcinka:	b/d
Typ inwestycji	b/d
Konstrukcja nawierzchni	warstwa ścieralna 3 cm Ruflex0/12,8 (Colflex 80B) +
odcinka oraz zastosowane	warstwa wiążąca 6 cm EME 0/16 (20/30)
materiały	
Dokument w oparciu o który	b/d
zaprojektowano mieszanki	
AC WMS	
Ocena uszkodzeń w 2012 r.	nawierzchnia w stanie zadowalającym
	spękania poprzeczne w sumarycznej liczbie 34
	koleiny przed skrzyżowaniami z sygnalizacją świetlną
	o głębokości do 15 mm

Odcinek DK92 od km 214+000 do 222+000 został wykonany w 2006 roku. Nawierzchnia jest w ogólnym stanie dobrym. Na całej długości odcinka zaobserwowano 34 spękania poprzeczne oraz niewielkie koleiny przed skrzyżowaniami z sygnalizacją świetlną. Nie stwierdzono innych uszkodzeń.

Na rysunkach 7.60-7.61 przedstawiono stan nawierzchni odcinka DK92 km 214+000 - 222+000 w roku 2012.

Rysunek 7.60 DK 92 widok nawierzchni w km 215+500

Rysunek 7.61 DK 92 spękanie poprzeczne przez całą szerokość jezdni w km 219+900

Kilometraż:	4+100 do 7+200
Długość odcinka:	3,1 km
Obciążenie ruchem:	b/d
Przekrój odcinka:	1x2
Rok wykonania odcinka:	2003
Wykonawca odcinka:	b/d, producent mieszanek - firma Colas
Typ inwestycji	Przebudowa istniejącego odcinka
Konstrukcja nawierzchni odcinka oraz zastosowane materiały Dokument w oparciu o który zaprojektowano mieszanki	3 cm warstwa ścieralna Colflex 80B 8 cm warstwa wiążąca/wyrównawcza Colbase D50+0,6%polietylen Większość odcinka prowadzona w krawężniku b/d
Ocena uszkodzeń w 2012 r.	 - 43 spękania poprzecznych - 17 spękań podłużnych o zróżnicowanej długości, część - otwarty podłużny szef roboczy na części odcinka

7.4.6.14. Droga Wojewódzka nr 196 odcinek Koziegłowy/Czerwonak

Droga DW 196 na km 4+100 do 7+200 została przebudowana w 2003 r. Większa część odcinka przebiega w przekroju miejskim, w krawężniku. Droga zlokalizowana jest na terenie miejskim, na którym stwierdzono dużo instalacji podziemnych, część z tych instalacji może przebiegać pod nawierzchnią. Szerokość jezdni zmienia się na długości. Najczęstszymi zaobserwowanymi uszkodzeniami są spękania poprzeczne. Spękania bardzo często występują przy studzienkach i wpustach deszczowych. Na części odcinka zaobserwowano rozszczelnienie podłużnego szwa roboczego. Zaobserwowano również inne spękania podłużne. Wzdłuż badanego odcinka zlokalizowano kilkanaście łat, które zostały wykonane najprawdopodobniej w czasie

układania instalacji podziemnych. Na całym odcinku nie zaobserwowano kolein i wybojów.

Na rysunkach 7.62-7.65 przedstawiono stan nawierzchni odcinka DK92 km 4+100 - 7+200 w roku 2012.

Rysunek 7.62 Stan nawierzchni DW 196 w 2012 r. Spękanie poprzeczne

Rysunek 7.63 Stan nawierzchni DW 196 w 2012 r. Spękanie poprzeczne przy studzience

Rysunek 7.64 Stan nawierzchni DW 196 w 2012 r. Spękanie poprzeczne przy studzienkach

Rysunek 7.65 Stan nawierzchni DW 196 w 2012 r. Spękanie podłużne

7.4.7. Województwo Zachodniopomorskie

7.4.7.1. Droga Krajowa nr 10 odcinek Mirosławiec

Kilometraż:	125+426 - 126+291
Długość odcinka:	0,8 km
Obciążenie ruchem:	KR4
Przekrój odcinka:	jedna jezdnia, dwa pasy ruchu
Rok wykonania odcinka:	2004
Wykonawca odcinka:	Maldrobud Myślibórz
Typ inwestycji	Przebudowa istniejącego odcinka
Konstrukcja nawierzchni	2 cm warstwa ścieralna SMA
odcinka oraz zastosowane	11 cm warstwa wiążąca WMS (DE30B)
materiały	13 cm warstwa podbudowy WMS (DE30B)
	Cały odcinek prowadzony w krawężniku
Dokument w oparciu o który	Zeszyt IBDiM nr 63
zaprojektowano mieszanki	
AC WMS	
Ocena uszkodzeń w 2012 r.	Brak uszkodzeń

Odcinek drogi DK 10 w Mirosławcu w całości przebiega w przekroju miejskim z krawężnikiem po obu stronach jezdni. Odcinek jest w stanie bardzo dobrym, na całej długości nie zaobserwowano znaczących uszkodzeń. Nawierzchnia jest równa, brak spękań lub rozszczelnień szwów roboczych. Wzdłuż odcinka drogi rozmieszczone są instalacje podziemne, studzienki kanalizacyjne i wpusty ściekowe, stan techniczny wszystkich urządzeń można ocenić jako bardzo dobry. Droga przechodzi przez miejscowość, na całej długości ruch pojazdów jest uspokojony i przeciętna prędkość pojazdów nie przekracza 60 km/h. Wzdłuż drogi brak jest sygnalizacji świetlnych.

Na rysunku 7.66 przedstawiono stan nawierzchni odcinka DK10 km 125+426 - 126+291 w roku 2012.

Rysunek 7.66 Odcinek DK 10 w Mirosławcu, brak zaobserwowanych, znaczących uszkodzeń.

7.5. Podsumowanie oceny stanu technicznego dróg w 2012 r.

W 2012 roku przyjęto system oceniania stanu technicznego nawierzchni oraz przeprowadzono pomiar zerowy wybranych odcinków dróg, do wybudowania których wykorzystano beton asfaltowy WMS. Wytypowane odcinki różnią się:

- lokalizacją (różne strefy klimatyczne), odcinki miejskie i zamiejskie
- obciążeniem ruchem
- klasą drogi
- konstrukcją
- wiekiem

Wytypowano 29 odcinków w 6 województwach. Łączna długość odcinków wynosi 346 km.

Po przeprowadzonej w 2012 r. ocenie wizualnej wytypowanych odcinków można stwierdzić, że stopień uszkodzeń nawierzchni jest różny. Dominującymi uszkodzeniami na analizowanych odcinkach są spękania poprzeczne, rzadziej zdarzają się koleiny. Stan techniczny 15 odcinków jest bardzo dobry, nie odnotowano na nich żadnych uszkodzeń. Wśród odcinków w bardzo dobrym stanie znajdują się przede wszystkim autostrady i drogi ekspresowe, ale również drogi krajowe wybudowane blisko 10 lat temu. Zestawienie odcinków dróg wraz z wyznaczonym indeksem spękań i występującymi na nich koleinami podano w tablicy 7.13.

Tablica 7.13 Zestawienie odcinków poddanych ocenie wizualnej w 2012 roku oraz uszkodzeń nawierzchni (indeks spękań, występowanie kolein)

Droga	Odcinek	Województwo	Rok wykonania	Rodzaj asfaltu	Długość odcinka	Uszkodzenia - Indeks spękań (liczba spękań na 1 km) - występowanie kolein
A8	Autostradowa Obwodnica Wrocławia	Dolnośląskie	2011	25/55-60	28,4 km	0
DK 5	Kostomłoty - Strzegom	Dolnośląskie	2010	20/30	18,71 km	b/d
DK 35	Obwodnica Tyńca	Dolnośląskie	2011	25/55-60	5,15 km	0
DK 46	Kłodzko - Podzamek	Dolnośląskie	2011	25/55-60	6,11 km	0,5
DK 46	Podzamek - Granica województwa	Dolnośląskie	2010	20/30	13,08 km	1,3 koleiny
DK 41	Prudnik - Granica państwa	Opolskie	2011	20/30	3,75 km	0
DK 45	Boguszyce - Winów	Opolskie	2011	20/30	4,45 km	0
DP 2002O	ul. Piastowska w Opolu	Opolskie	2010	35/50	0,80 km	0
S 8	Jeżewo - Białystok	Podlaskie	2012	20/30	24,5 km	b/d - duża ilość spękań w.wiążącej i podbudowy
S 8	Obwodnica Zambrowa	Podlaskie	2012	b/d	11,07 km	0
DK 8	Sztabin - Kolnica	Podlaskie	2005	30B	5,25 km	5,9
DK 8	Białystok - Katrynka	Podlaskie	2009	20/30	6,43 km	8,9
DK 19	Obwodnica Wasilkowa	Podlaskie	2011	b/d	5,00 km	2
DK 7	ul. Zwycięstwa w Gdańsku	Pomorskie	2009	20/30	1,00 km	0
DW 468	ul. Podwale Przedmiejskie w Gdańsku	Pomorskie	2009	20/30	1,00 km	spękania na połączeniu ze starą konstrukcją
A 2	Komorniki - Krzesiny	Wielkopolskie	2003	D50 + polietylen	13,30 km	0
A 2	Komorniki - Nowy Tomyśl	Wielkopolskie	2009	bd	50,40 km	0
A 2	Konin - Koło - Dąbie	Wielkopolskie	2005	20/30 i 35/50 + chemcrete	45,58 km	0
S 5	Wschodnia Obwodnica Poznania	Wielkopolskie	2012	25/55-60	34,64 km	0

S 11	Zachodnia Obwodnica Poznania	Wielkopolskie	2012	25/55-60 i 20/30	21,94 km	b/d
S 11	Poznań - Kurnik	Wielkopolskie	2006/2009	20/30	9,10 km	0
S 11	Obwodnica Ostrowa Wielkopolskiego	Wielkopolskie	2009	35/50 + chemcrete	6,10 km	0
DK 5	Obwodnica Poznania	Wielkopolskie	2003	20/30	2,70 km	5,9
DK 15	Obwodnica Gniezna	Wielkopolskie	2005	20/30	6,26 km	9
DK 92	Grońsko	Wielkopolskie	2002	bd	1,01 km	0
DK 92	Iwno - Starczanowo	Wielkopolskie	2003	D50 + polietylen	9,00 km	8,3 koleiny
DK 92	Starczanowo - Września	Wielkopolskie	2006	20/30	8,00 km	0,9 koleiny
DW 196	Koziegłowy/Czerwonak	Wielkopolskie	2003	D50 + polietylen	3,10 km	14
DK10	Mirosławiec	Zachodnio- pomorskie	2004	DE30B	0,8 km	0

7.6. Literatura

- [7.1] Cyske W., Ryś D., *Przyczyny powstania uszkodzeń na drodze krajowej nr 9 w Nowej Dębie km 144+100 – 145+400*, Gdańsk, sierpień 2012
- [7.2] Distress Identification Manual for the Long-Term Pavement Performance Program, Publication no. FHWA-RD-03-31, US Department of Transportation, Federal Highway Administration, June 2003
- [7.3] *Flexible Pavement Rehabilitation Investigation and Design*, Draft TRH12, Department of Transport, Pretoria, South Africa, 1997
- [7.4] <u>https://www.gddkia.gov.pl/userfiles/articles/w/wykonawcy-a2-skladaja-programy-n_10597/wykaz%20inwestycji%20WMS%202%2003-%20v1b.pdf</u>
- [7.5] Judycki J., Jaskuła P., Dołżycki B., Pszczoła M., Jaczewski M., Ryś D., Przyczyny spękań poprzecznych podbudowy asfaltowej o wysokim module sztywności na autostradzie A1, Odcinek 1, Czerniewice – Odolion, Odcinek 2, Odolion – Brzezie, Gdańsk, kwiecień 2012,
- [7.6] Judycki J., Jaskuła P., Dołżycki B., Pszczoła M., Jaczewski M., Ryś D., Przyczyny spękań poprzecznych podbudowy asfaltowej o wysokim module sztywności na autostradzie A1, Odcinek 3, Brzezie – Kowal, Gdańsk, kwiecień 2012,
- [7.7] Judycki J., Dołżycki B., Pszczoła M., Jaskuła P., Jaczewski M., Stienss M., Ekspertyza dotycząca rys i rozszczelnień warstw asfaltowych autostrady A-2, odcinek B, od km 394+500 do km 411+465,8, Gdańsk, kwiecień 2012,
- [7.8] Skadekatalog for bituminose vegdekker, Vegdirektoratet, Norwegia, september 1996
- [7.9] Sybilski D., Jezierska D., Maliszewski M., *Szybka naprawa nawierzchni ulic Warszawy*, Drogownictwo, nr 2, 2007,
- [7.10] Sybilski D., Bańkowski W., Prace badawcze laboratoryjne i w pełnej skali nad zastosowaniem betonu asfaltowego o wysokim module sztywności w nawierzchni drogowej, Drogi i Mosty, nr 1-2, 2011,
- [7.11] System Oceny Stanu Nawierzchni <u>http://www.gddkia.gov.pl/pl/998/system-oceny-stanu-nawierzchni</u>